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ABSTRACT

Theories of motion and stability of fluid-saturated soils, including the commonly

used engineering approach to liquefaction analysis as well as theories based on mechan-

ics of mixtures, are critically examined. Description of motion, development of equations

of balance, constitutive relationships as well as development of solution procedures are

reviewed. Limitations of various theories, their similarities as well as inconsistencies are

identified. Laboratory investigations into dynamic behavior of saturated soils are

reviewed.

A theory of dynamics of saturated soils eising a convected coordinate system to

describe the motion of soil particles; and' describing the motion of the fluid as relative

to the solid, is described. ' This theoryf may be regarded as',an extension of Gibson's

theory of non-linear soil consolidation to three-dimensions and to include inertia ef ects.

Solution procedures, developed for certain specializations of the equations of motion

of saturated soils, are described. These- include analytical, semi-analytical and numerical

solution schemes. The finite element is selected as the numerical procedure for approxi-

mate solution. Spatial discretization, time domain solution procedures and alternative for-

mulations of the field equations through a variational formulation are discussed.

Shaking table tests for validation of various -theoretical concepts, performed on

0 saturated Ottawa sand. are described. These included tests on anisotropically as well as

isotropically consolidated samples and tests to study the effect of overburden on a soil

system subjected to shaking. Harmonic as well as frequency banded random amplitude

excitations were used. Results are compared with previous laboratory investigations. 0
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Section I

INTRODUCTION

1.1 THE PROBLEM

Dynamic loading of fluid-saturated geological deposits results in changes in the

fluid presure as well as the strm field in the solid matrix. This phenomenon can. in

some cam, lead to instability of the soml matrix reslting in ol liquefactio Addition-

ally. the energy dimpation asociated with the relative ocillatory motion between the

fluid and the sold could introduce attenuation of the propagating wave. ThI effect

would be in addition to the energy dissipation due to any inelastic deformation of the

soil matrix. Inasmuch as the transmimibility of motion through the soil layer depends

upon the soil charcteristics. the soil deposit may act as a selective filter/amplifier.

For prediction of behavior of saturated sols under dynamic loads due to blast, earth-

quake or other dynamic event, it is important to develop adequate methodology.

Reliable analysis of saturated soil deposits subjected to dynamic loads involves the

following three steps

1. Correct formulation of the equations of dynamic equilibrium.

2. Correct representation of material behavior.

3. Exact or approximate solution of the problem.

The theoretical model must be validated by laboratory and/or field tests. As exact

solutions to the boundary value problems represented by the laboratory and field tests

may not be available, it may be necessary to use numerical solution procedures. How-

ever, before any computational technique can be used with confidence, it must be veri-

0
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fled against exact solutions to the theoreucal model It may be necesary to construct

exact solutions to some ample problems for code verification.

In view of the apparent diversity of opinions, postulates, and amumptions made

in seing up various approaches to the problem, there was evident need to develop

more realistic model of mechanical behavior of fluid-saturated soils. The research pro-

gram supported by the Air Force Office of Scientific Rearch was designed to addres

all the three components of the problem.

1.2 IESEAICH OBJECTIVES

Figure 1 illustrates the variables involved in the problem of dynamics of fluid-

saturated soils. In the absence of water, the dry soil would be modeled as a contin-

uum. Its motion would be defined completely by the components of displacement,

velocity and acceleration designated u,. u, u in the figure. These would define strains,

and strain-rates, which would be related through constitutive laws to the sese and

the st rates. Equilibrium relations would relate the ime with the applied body

and surface forces. Similarly the mechanics of the fluid, in isolation from the solid are

well-known. However. when the two occur together, the problem immediately becomes

much more complex. The equilibrium equations for each of the two constituents may

involve interaction terms the temm in each tnay depend upon the kinematics of both;

and there may be other couplings in the behavior. Various theories have been proposed

from time to time to explain the mechanical behavior of saturated sois and methodolo-

gies have been suggested for analysis of liquefaction.

The objective of the research program, was to critically evaluate the current

methods of analysis in the light of recent developments in theories of interacting con-

tinua and to develop thermodynamically and physically consistent theoretical or mathe-
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matical models of flid-turaed soil system Theories of interacting continua. in gen-

eral, regard a fluid-saturated sol as a multi-component mixture (superposed continua).

This approach had been succ fully implemented in the analysis of static and quasi-

static re snse of saturated soils. Several investigators have tried to extend this

approach to the dynamic case. However, there have been deficiencies in realistic smula-

tin of behavior of saturated sods. The purpose of the research program was to review

the theoretical basi of equations governing behavior of soil-water mixtures under

dynamic conditions, including interaction between sodl and water. The theoretical

development was to be implemented in effective finite element computer programs

incorporating recent developments in coding to ensure optimal combination of solution

accuracy and economy. The analytical research was to be supplemented by a program

of laboratory investigations

1.3 RESEARCH PLAN.

A two-year program of research was initially approved by the AFO starting

February 1, 1983. This was later extended to a four year effort ending January 31,

1987 and finally by another one year and one-month to February 29, 1988. The

research plan included both theoretical and laboratory investigations.

IA ANALYTICAL STUDIES

The first step in the research program was to carefully examine the theoretical

underpinnings of various existing theories of motion and stability of fluid-saturated

soils. This investigation covered a range of theories and procedures, including the com-

monly used engineering approach to liquefaction analysis and extending to mathematical

theories based on mechanics of mixtures. A theory properly describing the physical phe-

nomena was to be selected/developed and implemented in a solution procedure to pre-

dict the liquefaction behavior of the saturated soil under dynamic loading.
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I LABORATORY INVES7GATIONS

To provide a database for validation of various theoretical concepts, shaking table

tets were to be performed on saturated Otawa sand. A program of tests on ani otrop-

kally as well s isotopically consolidated samples was to be carried out.

1.6 COMMENTS

The research program essentially followed an evolutionary approach As the first

step in the program, literature on the subject was carefully reviewed. Two approaches

were selected for detailed investigation. These were the popular "engineering approach"

introduced by Seed and his co-workers [77-80,148] for liquefaction studies, and the

theories of mechanics of mixtures including Biots theory [17-19] which has been the

basis of analytic and numerical solutions for the problem. A dynamical theory for

dynamics of saturated soil was developed as an extension of Gibson's theory of non-

linear consolidation. For interpretation of test data in terms of predictions from vari-

ous theories, it was necessary that solutions to boundary value problems defined by the

competing theories be available. It was found that solutions to only the simplest con-

figurations were available for Biot's theory. Approximate solution schemes had been pro-

posed by several investigators but these had not been adequately verified. Finite ele-

ment computer codes were developed for analysis of dynamic response of saturated soils

for linear as well as nonlinear material properties for the engineering approach as well

as Biot's theory and its appropriate extension. Semi-analytic solution procedures were

developed to serve as bench-marks for validation of the time-domain integration

schemes. Analytical solutions were developed for certain problems for the purpose of

code verification.

Validation of numerical procedures presented a difficulty because of the paucity

of exact solutions even for relatively simple problems. Garg's [501 fundamental solution
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for Baot's equations specialized one-dimensional wave propagation in fluid-saturated

media was integrated to develop solutions for several cases of dynamic loading on the

surface of a aturated sd column. Incmaiencis in the solution for 'strong' coupling.

for which the drag between the soil and the fluid is high. were removed but it was

noticed that, in order to obtain an exact solution to the problem, Garg had made

smamptions which reduced the value of his theoretical solutions as bench-marks to ver-

ify numerical procedures. To meet the needs of the resarch program effectively, correct

solutions to this problem were developed. It was found that for the materials com-

monly encountered and for a short period of time after application of a sudden (e.g.

blast) load, Garg's approximation is quite good. Analytical solutions for some simple

cases were developed for propagation of standing waves by separating the singularity

from the smooth diffusive wave motion and using a combination of the method of

characteristics and finite element/finite difference procedures. These solutions were

extended to some two-dimensional cases. Computer codes were tested against these exact

solutions.

To develop alternative finite element approaches, a variational formulation of

Biot's theory, along with various extensions and specializations, was developed. It served

as the basis for the two-field and the three-field finite element solution procedures.

Elements suitable for wave propagation analysis were selected/developed. Singularity

elements had to be used near loaded boundarieL For nonlinear problems, an incremen-

tal approach was necessary. The equations governing this case along with a variational

formulation of the problem were developed. Only material nonlinearity was considered.

The theory was implemented in a finite element computer program. A modular struc-

ture was used so that a variety of models could be selected. The well-established 'cap

model' was implemented to fit the behavior of the sand used in the laboratory experi-

ments. For constitutive equations in incremental form, the corresponding balance equa-

S
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tions too were writen in terms of incremental quantities. This introduced incremental

changes in porosity and mass density as additional varables. Nonlinear codes were

checked against available solutions for wave propagation in single materials.

The experimental component of the research program was completed as envisaged

in the proposal. It had the following components:

1. Development of techniques for evaluation of material parameters that appeared
in the theoretical models considered.

2. Construction of a uniform, fully saturated sample.

3. Application of motion to the sample on a shaking table.

4. Recording of input acceleration and pore pressures up to liquefaction.

5. Analysis of the experimental data for the purpose of evaluating the theoretical
models.

A fine to medium grained sand, Ottawa sand, was chosen as the material to be

used in the experimental studies. A program of static tests aimed at identifying basic

material parameters that appear in the theoretical models was performed. For liquefac-

tion experiments particular emphasis was placed on laboratory techniques for proper

preparation of the necessary sand samples. Suitable methods for saturating the approxi-

mately 50 kilograms of sand required to build a sample were developed and samples

with a high degree of uniformity were repeatedly achieved. Instrumentation was call-

brated under both cyclic and static loading conditions. Different types of pore-pressure

gage applications were studied. Initial shaking table tests were designed to identify the

most reliable and sensitive instrumentation capable of recording input acceleration and

progreive development of pore pressures up to liquefaction. Improvements in collection

of data and its processing were implemented. Additional instrumentation was acquired

to collect an increased amount of information during tests.

0i
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These tests established the capability of the experimental set-up to serve the

immediate needs of the program. Both isotropically and anisotropically consolidated

samples were tested to liquefaction. Input motions consisted of both harmonic accelera-

tion time histories and random, white noise, accelerations. Further tests were carried

out to study the effect of overburden on a soil subjected to shaking. The experimen-

tal data obtained were compared with the results of previous laboratory investigations.

Shortcomings in these earlier test procedures were identified.

Figure 2 ilustrates the scope of the actual work plan and the accomplishments

under the research program.

1.7 STRUCTURE OF THE REPORT

Section 11 contains a review of previous theoretical investigations on the behavior

of saturated soils subjected to dynamic loading in order to highlight the basic assump-

tions of the various approaches. Section M] describes a dynamical theory of motion of

saturated soils, developed as part of the present research program, based on description

of the motion of a given set of soil particles in convected coordinates and regarding

the fluid motion as relative to the soil particles. Section IV describes some anlytical,

and semi-analytical solution procedures developed to obtain solutions to some simple

one-dimensional problems as weil as development of finite element techniques for anal-

ysis of wave propagation in saturated soils. Section V reviews previous laboratory

investigations and summarizes the experimental component of the research program.

Section VI summarizes the results of the research and contains recommendations for

future work. Appendix A describes some concepts related to the use of convected coor-

dinates to describe the motion of a solid. Appendix B lists the research publications and

presentations that resulted from the research effort.
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Section H

REVIEW OF PREVIOUS WORK

2.1 INTRODUCTION

Existing theories of dynamics of fluid-saturated soils were reviewed. Limitations

of various theories, their similarities as well as inconsistencies were identified. The

"engineering approach", described herein and based on methods of structural mechanics,

was considered along with the continuum mechanics approaches. Herein we briefly

review the salient features of these approaches as the background for the theory devel-

oped in the course of this research. Detailed documentation of this review is available

in the technical report listed as item 1.2 in Appendix B.

2.2 THE ENGINEERING APPROACH

This approach, introduced by Seed and his co-workers [77-80,148] uses methods of

structural dynamics to solve the problem of shear wave propagation in soils. The

approach has been successfully applied to several case histories [85,88,128,145-1541 It

consists of a finite element analysis of the dynamic system to evaluate the stress histo-

ry. This is folowed by a laboratory study of the material behavior under cyclic stress

conditions equivalent to those determined from the finite element analysis. This 0

approach has been extended to include a periodic updating of material behavior to

allow for the strain history as well as pore-water pressure build-up and dissipation.

The stiffness is assumed to be a function of the volumetric strain and the effective

stress in the soil. Generation of pore water pressure is assumed to be related to vol-

ume changes in water and soil. Assuming water to be incompressible, an incremental

II6

0.
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relationship is proposed between the incremental pore pressure and the volume change

in the soil. For one-dimensional idealization of a horizontally layered system subjected

to shear wave at the base, dissipation of the pore water pressure is expected to be gov-

erned by the equation

ir= E [ ---,r ] + Ee (2.1),z .z S k1

where w is the unit weight of water, K the permeability, E, the the one-dimensional

rebound modulus of the material at the effective stress applicable to the increment, and

e, are components of the strain tensor for the soil. Finn [42] called this the coupled

theory of liquefaction. The sequence of occurrences is assumed to be as follows: shear-

ing stresses cause volume changes, volume changes result in pore-water pressure changes,

pore-pressure dissipation follows, pore-pressures determine effective stresses and effective

stresses along with the cumulative shearing strain define the effective shear modulus to

be used for determination of displacements and stresses for the next time step.

Item 1A in Appendix B contains details of the methodology of the "engineering

approach" to liquefaction as well as its implementation in a computer program. The

computer code developed was used to obtain the response of a layered soil system sub-

jected to sinusoidal base acceleration. The problem data were taken from a case study

reported by Finn [42]. The surface acceleration and displacement as well as the time to

liquefaction reported by Finn and obtained using -the code were in good agreement.

However, the detailed response history obtained using the implicit and the explicit

methods was quite different. With refinement of the time mesh, one would expect

the explicit method to yield a sequence of results which would converge to the solu-

tion obtained by the implicit method. However, the solution procedure requires experi-

mental data which are dependent upon the frequency of cycling, the natural frequency

of the soil system etc. and would have to be generated for each case studied. The

0,
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study showed the approach to be cumbersome and based upon several assumptions. The

physical properties required as data for the method can only be determined as a func-

tion of the complete number of cycles of stresw at a certain amplitude- Thus, in an

explicit type solution scheme, it is possible to reduce the time interval for updates to

only as small as the time period of vibration. For this reason it is not possible to gen-

erate a convergent sequence of solutions based upon reducing the size of the time step.

Implicit schemes are expected to be more reliable. Post-liquefaction distribution of pore

pressures and the extent of the resulting disaplacements in the system cannot be cor-

rectly determined in this theory. Furthermore, the approach has only been used for

one-dimensional wave propagation, and cannot be readily extended to two and three-

dimensional cases. Use of this theory requires considerable experience and "judgement",

in addition to extensive laboratory testing program, to get useful results.

2.3 CONTINUUM MECHANICS APPROACHES

2.3.1 Biots Theory.

Biot's theory, based on concepts of coupled motion of soil and water, has been the

most popular alternative to the empirical approaches. This pioneering work was based

on certain postulates regarding description of motion, notion of partial stresses, the exis-

tence of energy and dissipation functions for the saturated mass and a certain form for

the kinetic energy of the mixture. These assumptions led directly to the conclusion

that constitutive coupling, inertial coupling and equilibrium couplings exist and are

symmetric in form. The equations of momentum balance were written for the mixture

as a whole and for fluid motion relative to the solid. Several different forms of Biot's

theories exist. The most general form includes body forces, inertia forces and the effects

of coupling of the fluid and the soil mass as well as the constitutive coupling

between the soil and the water.

=4 0•
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Biot [11] wrote the constitutive equations for the flow of a compressible fluid

through a porous saturated linearly elastic medium assuming the existence of an energy

function quadratic in measures of deformation associated with the saturated soil ms.

These included the six components of the soil strain. Change in water content was

added as the seventh kinematic variable. While extending the analysis to compressible

fluids and anisotropic elastic or viscoelastic solids, Biot [14,15] introduced the volumetric

strain of the fluid as the additional strain parameter instead of the change in water

content used in the earlier theory and explained later [20] that the two variables were

essentially the same. Garg's [50] formulation can be shown to correspond to Biot's. In

Garg's theory, the constants are related to the properties of the constituents and their

volume fractions. For the dissipative case, a dissipation function, quadratic in relative

velocity was introduced. For a statistically isotropic saturated material, Biot [17-19] ,

expected the kinetic energy to be quadratic in the velocities of the fluid and the soil

and a coupling term was included. This introduced an inertial coupling between the

soil and the fluid. However, it is difficult to assign numerical values to the various

quantities that arise as a result of this coupling. As a part of this review, the theory

was implemented in a finite element computer program and a parametric study carried

out to investigate the efect of this coupling on the dynamic response. Preliminary stud-

ies indicated that the effect would be insignificant. However, further study of this

particular feature is needed.

While developing finite element solution procedures for the problem, Ghaboussi

[53], following Biot [15,18,19], introduced relative volumetric strain in the formulation.

The momentum balance and the continuity equations were written in terms of six dis-

placement components viz. the soil displacements and the relative displacements of the

fluid. A Rayleigh type viscous damping term was introduced. This intrinsic damping of

the soil is in addition to the damping associated with relative motion. Ghaboussi [53]
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developed a variational formulation for the problem but for the purpose of finite ele-

ment analysis he used the Galerkin procedure. Also the boundary conditions were not

treated properly.

2.3.2 Theories of Mixtures.

2.3.2.1 Introduction

To apply the principles of continuum mechanics, it is customary to regard a

fluid-saturated solid as superposed continua. Averaging of various quantities, kinematic

as well as mechanical, associated with the various constituents, is inherent in this

assumption. The mixture is defined by the current coincident configuration of the con-

stituents. It is assumed that, in the current configuration, each point of space is occu-

pied by a particle of each of the constituents. This necessitates the introduction of

"bulk" description of the material instead of the "intrinsic" description which would

apply if the material were the single constituent of a body. In any theory of mix-

cures, it would be necessary that as the volume fraction of one of the constituents

approaches unity, and the remaining constituents disappear, the theory for a single con-

stituent be realized as a limiting case.

In developing a rational theory of mixtures, Truesdell (1651 laid down the fol-

lowing principles:

1. All properties of the mixture must be mathematical consequences of properties
of the constituents.

2. So as to describe the motion of a constituent, we may in imagination isolate
it from the rest of the mixture, provided we allow properly for the actions
of the other constituents upon it.

3. The motion of the mixture is governed by the same equations as is a single
body.

The third of these "principles" is open to serious objection. This issue is addressed in

a later paragraph.
0
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2.3.2.2 Density of Each Constituent and of the Mixture.

The effective (also referred to as partial or bulk) density of the kth constituent,

when it is regarded as one of the continua occupying every point in the spatial region

of interest, is related to its intrinsic density as

p) = n(k)pk)* (2.2)

where noo is the volume fraction, superscipted Roman characters enclosed in parentheses

identify the constituent in the mixture, and a superscripted asterisk denotes an intrinsic

quantity. The density of a mixture of n constituents is defined as the weighted sum

of the densities of the constituents ie,

= Tk) (2.3)

k-I

Other definitions for partial densities have been used. Terzaghi [161] assumed the

effective density of water to have the intrinsic value and regarded the soil as buoyant

in the water.

2.3.2.3 Description of Motion.

Several approaches have been used to describe the motion of the constituents of a

multicomponent mixture. Often the deformation is referred to an initial configuration

for each constituent and motion to the place coordinates. The equations of balance are

written for a fixed volume in space. Another approach is to refer the motion of all

constituents to the reference configuration of one of them. Yet another is to refer all

motion to the current configuration which is the same for all constituents. Superposi-

tion of relative diffusive motion of the constituents upon the mean motion of the

mixture as a whole is also used. For a binary mixture of a solid and a fluid, some

investigators describe the motion of the solid with respect to its reference configuration

but the motion of the fluid is described as relative to the solid. Another approach is

to refer to a material region consisting of the same set of particles of one of the con-
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stituents so that the bounding surface of this constituent varies with time. If the

description of the material particles is the same during motion as in the initial config-

uration, this would be the convected coordinate description for the reference constituent.

Gibson's theory of consolidation [55] is a special case of this approach.

Using a fixed rectangular cartesian reference frame, the deformation gradient is

defined as the partial derivative of the place coordinates with respect to the reference

coordinates. The velocity vectors and the acceleration vectors are defined as the partial

time derivatives of the place coordinates for the same material particle. Most investiga-

tors, also introduce a barycentric velocity rate for the mixture as a whole as:

S(k (k)
P v 

(2.4)
k-I

where v, are components of the velocity vector. A material rate for the mixture is

established using the identity:

' _(k) D(k) D
P = P.D (2.5)

k-I

The diffusive velocity is defined as the velocity of a constituent relative to that of

the mixture, i.,

u W = v - v. (2.6)

Biot [15,18,191, for the case of binary mixture of a solid and a fluid, introduced a

nominal relative velocity

w = n(2)(V( 2 _Vt) (2.7)
i I

This and its variants were used by Ghaboussi [531, Krause [86] and Kenyon [84], among

others.

0"
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2.3.2A Measures of Deformation.

The deformation gradient and the spatial velocity gradient can be used to com-

pletely define rates of deformation. For material objectivity to be satisfied, the vorticity

tensors, in binary mixtures, must occur as the difference of the vorticities of the con-

stituents.

For a fluid-saturated porous solid, the deformation gradient can be used to

describe the changing configuration of the solid. Garg [48,491 and Morland [103,104]

among others, used as measures of deformation of the solid, the quantity

(1) u(1) 1 [u(I) +u I(
ij = (,)= 2 (2.8)

where u, denotes components of the displacement vector. Here, and in the sequel, we

use the standard indicial notation. The Roman indices take on values in the range 1,

2, 3. Summation on repeated indices is understood unless stated otherwise. A subscript-

ed comma denotes differentiation with respect to the coordinate represented by the sub-

script following it. Parentheses around a pair of indices indicate "symmetric part" and

square brackets the "antisymmetric part". Superposed dots indicate differentiation with

respect to the time parameter. This measure of deformation characterizes the linear

theory. For setting up constitutive relations for flow through a porous saturated elastic

anisotropic medium, Biot (15,161 used relative volumetric strain defined by the equation

n(2), (2)e(l)) 29
--- n kk e (2.9)

Other, more general measures of deformation are also used, e.g. [103 For an initially

isotropic solid, it is possible to define as a measure of deformation the quantity

2ei, = Fmi F - 8ij (2.10)

where F1, are components of the deformation gradient tensor. If the only deformation

of interest is the volume change the change in density is an adequate measure of

deformation. In a binary fluid-solid mixture, for small strain
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Po -- P e (2.11)

where the subscript denotes initial value or the value in the reference configuration.

For the fluid constituent the deformation is completely represented by its density, Le,

(2) (2) (2'O

e(2) - Po fno Po (2.12)
2) U-(2) p(2) 1

Introducing an intrinsic measure of deformation [103]
= [n 2)I n(2)1/3F(2) (2.13)

ti 0 ij

Morland [104] also proposed, for infinitesimal strain theory,

0),= • M [(2)_ (2)1

e3 =e 0(2.14)

(2)

MR = 1 (2.15)
Po

e(P e(1) = e(O I 1 (). (2.16)
ij 3 mm ij ij 3 mm ij

and [1061

(2)' (2) (2) (2 >

e2" = e2) + ( (2.17)b j (2)
no

In addition to the measures of deformation defined above, the volume fractions of the

constituents have been used as state variables. An intrinsic rate of strain of the fluid

(2)' (2)+ (2~) 1d2) I(2)Dj -- i - -n(--j _ n- 8j (2.18)

was introduced by Morland [1041 Here -- denotes the "material rate". Another
Dt

measure of relative deformation sometimes used is, (e.g, Krause [86D, the change in flu- 0

id content of a fixed volume in space. This amounts to

(2) (2) (2 ) (2 ) (2.19)

n = P - PO (a 0 2.19
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Carroll [27], considering a fixed volume of the solid in the reference configura-

tion, assumed the total deformation to be the sum of the strains of the solid particles

and the change in geometry of the pores. The bulk volume strain was found to be

- + (2.20)

n ~ (i) V71)

For the anisotropic case, Caroll [291 wrote

e, =n(i)e M* + n(2) (2)* . e n 2)* e (2.21)ei - ij eij "- ij ij -- ij -

as the strain of the reference material volume of the bulk solid. Carroll [28] assumed

the solid intrinsic deformations to be reversible under solid pressure and the pore vol-

ume change to be irreversible under effective pressure. This would explain cumulative

volume change under cycling of load. Kenyon [84] regarded the specific volume of the

solid as a state variable related to the intrinsic pore fluid pressure and the solid defor-

mation gradient.

2.3.2.5 Balance Laws

a). Earlier Theories.

The equation of mass continuity of the fluid, equating the inflow into an elemen-

tary volume of a rigid porous one-dimensional solid with the increase in fluid content,

is

_ )= 0 (2.22)
ax at ax

Here v is the velocity of the fluid relative to the soil and x, X are the coordinates in

the current and the reference configurations, respectively, referred to a Cartesian refer-

ence frame. Allowing for compressibility of the pore fluid, Gibson [55] used Scheideg-

ger's [140] formulation of d'Arcy's law. The flow equation has the form

n= -k ! + p(2 .L.__=_] (2.23)ax ax ax
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Ghaboussi [54] stated Bioes momentum balance equations as

pb = "(1) (2)W -42), ().(2) 2 ) (2.24)
ttjj+Pb =PUt -P rU, -U, P U, P i 24

and

W/.+ ( (22 - [ (() "(2) *(2) (2)2) 1 () ((2) .
III u -P Li -ut°J- tu -ui J P ui - ti -- i (2.5)

where k is a measure of permeability of the soil and t' are components of the "total"

stress tensor. Garg [50) wrote Biot's equations of motion, in the absence of body forces,

in the following form:

t W ( )'_ t) (216)

j,= (2.26)

=j pU --2) b (2.27)

The second term on the right hand side of these equations represents the viscous

coupling between the solid and the fluid.

b). Mechanics of Mixtures.

For each constituent of the mixture, Truesdell [164-166] postulated the balance laws

in the point form. Using the notation of [641 these were:

i. Continuity of Mass.

i 1(k)+ k)v(k))-- (2.28)

where cW is the moa production fraction of the kth constituent. An alternative form !

of the man continuity equation is

D(k)

Dt + (2.29) 0

Bowen (24] wrote the above equation in the form

-( pk det ph ))= p (k)l (2.30)
j p ~i



22

ii. Balance of Linear Momentum.

-1p vL)Vk + ( pQvWv~k) -t~k Pm()+= ~ ( (2.31)

Hene tW9, pe pm are, respectively, components of the partial Cauchy strew tensor, the

body force vector per unit mus and the partial momentum supply density for the

constituent. An alternative form is:

j(k f k ) .. 1 (2 .3 2 )

Bowen [24] proposed to replace the momentum supply term m(L by m h+c~kVk) to get

pILfIL = t(Ik) + pm~k)+ pkk))(.3

iii. Balance of Moment of Momentum.

tij t;k= j(2-34)

Here pwi are components of the skew-gymmetnic tensor describing the partial produc-

tion density of the moment of momentum of the kth constituent.

Iv. Balance of Energy Rates.

k ) k ) (U ( h + q ) -d r(k ) = ~( k )+ P a ( k ) (2 .3 5

where

AU~k) = e W_ ( U]k)_ I v)V( C() V~kM~k)_- !Sk)v W (2.36)

Here U~) q(') r~k, e~k are, respectively, the specific internal energy. components of the

partial heat flux vector, the partial energy supply and the partial energy production

density of the kth constituent.
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Bowen [24] wrote the energy rate balance equation, for a fixed volume in space

of the kth constituent, and derived the point form of the equation of energy balance

S(kVk(k) (k) (k) (k) (k) (k)

p iqj-p r = v p(2.37)

Several alternative forms of the above equation have been stated (24,1641 Bowen [241

pointed out that for the case of single temperature mixtures, explicit use of an energy

equation for the constituents is not needed.

Truesdell [164,166] postulated balance equations for the mixture as well. These

equations can be derived by summing over the equations for the constituents. Truesdell

introduced the following quantities to ensure that the resulting equations for the

motion of the mixture have the same form as the equations of motion of a single con-

stituent.

L Specific internal energy of the mixture

-- Z-k)uWul (2.38)P k-I

Or. equivalently,

P(U "+ lvv) Z( k)(U(k) + V(k)V(k)(

k'2
2 -I

iL Total sren s tenor

0 n

t E (t(k)_ (k) (W(k)=i i - ui uj• (2.40)

k-l

Or, equivalently,

k-I vv (2.41)

k-
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iii. Total heat flux vector

q = (q(k)+ p(k)( U(k)+ L-U(k)u(k)) uWt(k)u(k) (2.42)
q, = a 1 2 j i ui Ij (.2

k-i

Or, equivalently,

n

q + pv[ U + LvjV) - tivj = [q k)v U"k)+ .TVjk) - tWiVj (2.43)

k-1

iv. Specific energy supply.

=.L E(k)( r(k)+ b k)U(k)(
r = P k-I (2.44)

Or, equivalently,

pr+bV i) " Zpk)( r(k)+l b(k)V(kb 2.

4 p(r +biv) ~ ~ (2.45)
k-I

Also, thermodynamic isolation of the mixture was assumed, ie,

E = 0 (2.46)

k-I

Emlk) 0 (2.47)
k-I

and N~e k ) =0 (2.48)

k-I

Kelly [821, Truesdell [1641, Green [661 and Bowen [241 wrote the equations of

mass, momentum and energy conservation for the mixture contained in a valume V

bounded by an arbitrary fixed surface A. The conservation of mass was expressed by
n nt

~fk)dV+f Jn (k)v(k) dA =0 (50)

fd +- (k. 
( 2
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Equating the linear change of momentum to the total force exerted on the

material, using the divergence theorem, Green [66] obtained

*( E [ + v +VL OUW (k k:uPkkJbdV, ( ) + t~kk+ t dV (2.51)

The point form immediately follows from this integral form of the equation of bal-

ance of momentum. Green [66] noted that with the definition of the total stress tensor

proposed by Truesdell, their form of the equation is the same as that obtained by

Truesdell. However, if the total stress is defined as the sum of the partial stresses, the

equation reflects the fact that the total rate of increase of linear momentum is not

equal to the barycentric rate of increase of momentum of a continuum of density

moving with the barycentric velocity.

The theory for a mixture of two constituents presented by Green [62,64] was

generalized by Mills (99] to the case of multicomponent mixtures. Green [62,641 consid-

ered the concepts of stress, heat flux, and energy supply, assumed to be primitive to

each constituent, to be primitive to the mixture as a whole as well. It was proposed

that the total stress and the total heat flux for the mixture should equal the sum of

the corresponding quantities for the constituents. Green [661 stated that Truesdelrs equa-

tions were correct but there was difficulty accepting the interpretations associated with

some of the quantities which occur in these equations. For a volume V enclosed by a

fixed surface A, following Truesdell's contention that the rate of energy equality has

the same form as for a single constituent, Green [661 wrote

- (U + Lvv)dV+fpnjv(U+ ivjv)dA
2 ' 2A 2

(kk
) r(k)+ b (kv, )dV+ (t vj- q) n~dA (2.52)
k-1 A

= kp (r. .(k) k) .. S

S



26

Here the left hand side represents the rate of change in energy in volume V bounded

by a fixed surface A plus the energy flux for the mixture across the boundary. U is

the specific internal energy per unit mass of the mixture and is related to internal

energies of the constituents by Truesdell's equation. The equality may be regarded as

written for a surface moving with a continuum which has a velocity field equal to

the barycentric velocity. Then the left hand side is equal to the material rate, executed

on the mixture, of the sum of the internal energy and the kinetic energy of the mix-

ture. However, this line of thought is open to objection. It would assume the existence

of mixture particles and the time rates executed on them. This is, in general, not cor-

rect as the barycentric velocity is not particle velocity in the ordinary sense. Green

[66] accepted the form of (2-52) but not the interpretation associated with some of the

quantities occuring in it.

Green [621 proposed a rate of energy equality in the following form:
Sn .n

- (PU =+ I p k)v W v(k dV+ (Ujgk) )+ (k) (k)k)Ck) )n dAat "2l f= V i 2i)I'"J P J+ Z kI v  i V na

k-1 A k-I k-I

- ( pr + pk) bW v i (k dV + J Z( t)v - q ) dA (2.53)
k-I A k-I

Here, the heat fluxes and the energy supply are assumed to be additive. U is the

internal energy per unit mass of the mixture allowing for all interactions between the

constituents. The t ) are components of tractions associated with the kth constituent

and the surface A. In this theory, multipolar stresses and externally supplied multipo-

lar body forces were excluded. Green [62] also made no attempt to define the internal

energy and the energy supply for each constituent. It was considered unnecessary for a

complete general theory.

S

0
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Later, [641 the role of interactions between constituents was made explicit by writ-

ing, for each constituent, the rate of energy equality

_L r pk UW+L Iv(k)V(k) dV + P()n k(Uk+Lv()v( d

V A
= J/p(k)( r~k+ b(,v) dV +f t(k)(k) q(k))..I

+ a)vk)+ X(k)r(k)) + 4(kj dV f f k) dA (2-54)+ i Ij j

where , X , are the internal force and couple acting on kth constituent due to

interactions and 0, ik) represent volume and surface contributions, respectively, to the

balance of energy. Also

a = 0 (2-55)
k-I

y,(j = 0 (2.56)

k-I

n@

Yk)= 0 (2.57)
k-I

Without loss of generality, X,, can be taken to be [641 antisymmetric as 1T is anti-

symmetric. Bowen [24], and Bedford [91 used esentially the same form in writing ener-

gy balance equality for each constituent. Assuming the quantities , p, U, v, for the

mixture are sufficiently smooth in the space and time variables, it can be shown that:

n n
"D U-Pk~,S ) fk) b(k))] dV + (k(k)( U + v(k)(k

Dt k-I ' k-I 2 .~d

=f (tk)Vik) q ) dA (2.58)

A k-k

Invariance of the energy equality under superposed uniform translational velocities

yields, for arbitrary V.
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=pc(k~dv 0 (2.59)

ie, the mass elements of the mixture are conserved. It was also shown that

Dt+ Pvi = 0 (2.60)Dt

A generalization of Cauchy's strem principle was derived in the form
n n

t )= t W n (2.61)
k-I k-I

In point form, the equation of balance of linear momentum for the mixture postulated

by Truesdell was obtained. Green [62] obtained, for a binary mixture,

lpr-p--31- l [ p~b1  ~) ()b 2  ~)] (I)i  --) " (2
p -- 2 -' ' i 2 ij i U

M t(( t(2) (V( v() ) Af

+ (ti ti i ) dA  qdA (2.62)
2 f f

A A

Defining, following Mills [99]

(k) = (k) W.3
P =t -ti (2.63)

and applying the rate of energy equality to a tetrahedron bounded by the coordinate

planes and a plane with unit normal nj for heat flow hj across plane xj, for a binary

mixture, Green [62] obtained:

q-hn i (2.64)

In the special case when q = hjn, p1) and p, vanish except, posibly, in the case of no

relative motion between the constituents. Rate of energy equality can also be stated as

__1n n
j ,, (k). (k).LCkV)V t Vkp-- --- pr+hj j- .m()()+ (k/)(k)V k V --- t(k)v(k) 1dVk ij = 0 (2.65)

pr+ k-I v+k-I 2k-I ,I JV 0(.5

where

o(k) = t(k)+p(k)(b(k)-k ) (2.66)
i '.J
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Invariance under a superposed uniform rigid body angular velocity leads to symmetry

of the sum of partial stresses. The partial stresses do not have to be symmetric. The

rate of energy equality was written in point form as

n 0-I n-i

_ (k)d) ,-. Ckjp Vi )-V i ) - 0 (2.67)
k-i k-I k-I

where

(k) = (k) I (k)( (k)v(n (2.68)PA 7-- V i - i -

= t~k).+ o(k)( bW_-- k - (k)( v(k)_ ( (2.69)

In setting up the rate of energy equality, it was stated that the internal energy

per unit mass of the mixture may not be equal to the sum of internal energies of the

constituents. Green [66] showed that if the sum of internal energies of the constituents

is defined by

n

pU = p(k k) (2.70)
k-I

the rate of energy equality in the form of equation (2.58) is realized if the energy of

the mixture is defined by the equation

p RU = pD-U + K (2.71)
Dt D

where

K = E(p IL)(k)U(k)) (2.72)
k-I

c). Other theories.

Several investigators have used the basic concepts introduced by Truesdell and by

Green. These efforts aim at simplifying the description of motion for certain special

cases For instance, in granular porous media, the total deformation can be viewed as

"!

• -" i
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made up of two part; one related to deformation of the solid particles and the other

to their rearrangement ie. changes in pore geometry. For compressible materials, volume

fractions have been introduced as additional variables. Herein we outline some of the

results.

L Mass Continuity Equation Using Relative Velocity

Krause [86] referring to fixed volumes in space, for continued saturation and no

mass production, wrote the mass continuity equation as

n p np +(n p j -). = 0 (2.73)

If the materials are intrinsically incompressible, ip" = 0. Hence, if the intrinsic density

is also spatially constant,
W (k W, k (k)'

n -n v j- 0 (2.74)

For a binary mixture, the above equations lead to
[v(|)+ n(2)(V(2)V()] =0 (2.75)'

Hsieh [76] added the equations of continuity of man for each of the two constituents

in a binary mixture and, for no chemical reaction, obtained

p= 0 (2.76)

as the mass continuity equation in terms of relative velocity. Assuming small defor-

mations, -he also wrote the continuity equation for. the fluid volume contained in a

fixed volume in space as

ij (1) +( ( (2) u(1))) 0 (2.77)
Ot - ) + GO at+ui --u. =

Integrating over time, for compressible fluid of spatially uniform initial density

t
P PO (1 ee0)+P () w , r)d (2.78)

00
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L. Mass Balance in Terms of Porosity

Fukuo (461 used the equations of mass balance to set up equations in terms of

volume fractions of the constituents. Assuming no chemical interaction, using intrinsic

densities, he obtained:

(k pk)'+ n('k) + ( n(lp v) 1, = 0 (2.79)

If the kth constituent is incompressible, p/k)* =0, and p(k =0. Hence,

6(k)+ ( nCk>vlk). = 0 (2.80)

Hsieh [76] considered a porous solid saturated with an incompressible fluid and under-

going small deformations. For this condition, considering a unit volume in the unde-

formed state, they showed that the fluid content change is

n = (n(2) (2)- (2)e () (2.81)

They also showed that

e(at = 0 (2.82)it ( ' i ,

This is a relationship between rate of porosity change, the rate of volumetric strain

and the relative velocity vector. These quantities, in a theory for incompressible fluids

and no thermal or chemical effects cazinot, therefore, be treated as independently vari-

able. For compressible fluids, Morland [103] proposed constitutive equations for porosity.

iW. Alternative Form of linear Momentum Balance.

Considering balance of momentum of fixed volumes in space, Hsieh [76] derived

the local form of the momentum balance equation, for no body forces, as:

n n n
_.j k p(k)V(k), , ( pk)V(kV) t(k) (2.83)

a I  - k-I i J.J- fi.J
i ok-i

Assuming additivity of stresses, for a binary mixture, he obtained
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StI) + v (2.84)p - i  I at i  j- v)i,j + vjv,= t#ji

where v, = v - v is the relative velocity.

iv. Energy Azlance In Terms of Porosity.

Goodman [57] postulated the equation of energy balance for a porous material

with porosity n as

- (t V. + S. an- ) n dA (2.85)

Here K, s. 1 are, respectively, the equilibrated inertia, components of the equilibrated

stress vector, and the external equilibrated body force. This equation admits an addi-

tional degree of freedom, viz, the volume fraction. A kinetic energy term was associat-

ed with the rate of change of n. Similarly, rate of work terms were associated with

the rate of change of n over volumes and surfaces using generalized forces si and L

Invariance of this equality, as in Green theory, leads to the equations of linear momen-

tum and angular momentum balance. Goodman [57] also postulated an equation of 0

motion, called the equation of balance of equilibrated forces, for the variable n, as

D I np' JKA +l+g]dV = fsjn dA (2.86)

D t ~ t A

Here g is the intrinsic equilibrated body force. They also wrote the local form of this

equation.

v. Other Form of Energy Balance Equation Bowen [241 postulated the point

form of the rate of energy equality as

n

p &i[U+ vv,] = (t v-q) + Pr + (k)v (k)() (2.87)
t 2b
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Using an interaction force vector, Green [67] wrote the energy balance equation in

point form as

D-r(+ kvk+ ()v (k)+ (k) (k) (k) (Dt = p r - q.'- + 2 i ui u (2.88)
k-i

where

(k (2.89)
k-i

V p U (2.90)

and

(k = .k ("(k -k)) W ((k) k (2.91)

/11 =tji-i + p )b i (.1

Mokadam (101] considered the total internal energy for the mixture to consist of

three components,

E = U+T+L (2.92)

where U, T, L, are respectively, the molecular, the kinetic, and the potential energies

per unit mass of the mixture. Identifying the diffusive force as the body force causing

mass flow, Mokadam postulated equations of balance of energy in the form

apE = _(pUv + q -tjv) +Djvj (2.93)
at j

where D, are components of the diffusive force. Also

apL = -(pLv?.- pfv (2.94)

at 2

For no chemical reaction, the above equation along with maws conservation implies

DL - f'v. (2.95)
Dt

Mokadam wrote, for no chemical reaction

PU (tv) -( pTv + q). (2.96)
t ' '

I p~v.q,)
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2.3.2.6 Constitutive Relations

In order to set up constitutive equations, it is necessary first to define the

mechanical quantities for which such relationships are desired and to identify the kine-

matic or state variables on which these quantities might depend. For a mixture of sev-

eral constituents, the streas in the constituents are obviously the primary mechanical

variables. Truesdell [163] following Maxwell (971 recognized diffusive resistance as

another mechanical variable reflecting the interaction between the constituents. The rate

of energy equality contains scalar products of "corresponding" quantities. This indicates

the need for postulating constitutive relations for components of the symmetric and the

antisymmetric parts of the partial stress tensors and an interaction quantity. Again, if

the equations of mass, linear momentum, angular momentum, and energy balance for

constituents be regarded as equations for certain quantities, constitutive equations are

required for the other quantities appearing in those equations and also for the partial

entropy of each constituent. These constitutive equations are subject to the balance

equations for the mixture and to an appropriate entropy production inequality.

There has been some difficulty in defining components of the partial stress ten-

sot. For fluid-saturated solids, the isotropic fluid stress is generally considered to be

the stress variable in addition to the stresses in the solid. Biot (111 regarded the total

stress and the fluid stress as the mechanical variables. The definition of pore-fluid

pressure used by various investigators differs considerably. Traditionally, for a water-

saturated soil the pressure recorded by piezometers inserted into the water-filled pores

has been assumed to be the fluid pressure acting over 100 percent of the area of inter-

nal surfaces [5.26,74,81,90,162,1751 Biot [17] pointed out that the generalized forces

defined by divergence of the stresses are correctly defined by the virtual work of

microscopic stresses per unit value of the displacements of the constituents and not as

the average of the microscopic stresses. Mokadam [1001 following Guggenheim [681

regarded the fluid pressure to be the thermodynamic property such that
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rdV dW (2.97)

where dV is the differential change in the intrinsic fluid volume and dW the reversi-

ble work of the fluid phase.

Garg [491, Morland [103-105] Pecker [119] and Carroll [27] among others, intro-

duced the notion of intrinsic stresses for each constituent leading to

n(k) i(k) (2.98)
Li iJ

Tsien [166] divided the total stress into stress deviation and a hydrostatic compo-

nent. The hydrostatic stress was expected to be distributed over the solid and the fluid

in proportion to their volume fractions and the solid was expected to take the entire

stress deviation. Terzaghi [161,1621 as well as Green [61-67] assumed the partial stress-

es to act over the entire area of any surface element. Further, assuming partial stresses

to be additive, the total stress in a saturated soil. assuming isotropic fluid stress, is

=t(1), +(2) (2.99)

Biot regarded the partial soil stress to be the bulk stress acting over the entire

area of internal surfaces. In his earlier work [11 there was no reference to the area

over which the fluid pressure acts. Later (121 Biot assumed the fluid pressure to act

only over the pore area. This corresponds to the notion of the fluid pressure being an

intrinsic quantity. Thus

-- t() + n(2)t(2)s (2.100)tiJ U ij

a). Diffusive Resistance.

Diffusive force, identified as the interaction force by Truesdell [163,164] was !

called "diffusive resistance" by Green (62-671 and Crochet (371 Biot (181 described it

as "disequilibrium force". The words "friction" and "drag" have also been used. Max-
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well [97] defined it as a pair of equal and opposite forces acting on the two constitu-

ents in a binary mixture. For non-chemically reacting continua, in the absence of iner-

tia effects, the equilibrium equations for the fluid-saturated solid can be re-written as
t (1).+ (O)b() ._t (2) -P(2)b(2)(21)
ij.=-9,t-P (2.101)

Each side of the equality represents interaction between the constituents ane is set

equal to components of the diffusive resistance vector. A set of single-constituent stress-

es in equilibrium can be added to the stresses on either side without affecting the def-

inition of diffusive resistance. For hydrostatic fluid stre, the diffusive resistance is

+, oWbi +- t (2.102)

where

(i")+ t2 ) =0 (2.103)

the superposed bar indicating a set of stresses in equilibrium. Maxwell assumed the

interaction force to be proportional to the densities of the constituents and to the rela-

tive velocity. This is easily seen to be a special case of the more general relationship

indicated by the above definition of diffusive resistance.

If inertia effects are included, for a binary mixture, gk) the quantity conjugate to

the relative velocity in the energy equality is

-pi 1 $- Pj- (2.104)-- i -- IL | - 2 ' I - j.j - ,.J

This definition is somewhat more general than the one used by Green [(64,65] where

the term involving mass supply was ignored. In [66]. however, following Mills [991 a

general form was stated for a mixture of n-I fluids and a solid.

Truesdell [164] proposed a mechanical theory of diffusion and showed that the

kinetic theory, the hydrodynamical theory and the thermodynamical theory were all

specializations of his general theory. According to TruesdeLl "diffusion, being a change

_ O

i
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of motion, arises from forces; the motions produced by these forces must conform to

the principle of linear momentum applied to each constituent and to the whole mix-

ture". The sum of supplies of partial momenta to the constituents must vanish. The

simplest constitutive equation for supply of momentum would be a linear dependence

of the partial momentum upon the quantity "corresponding" to it in the energy bal-

ance equation. viz., the relative velocity of the constituent with respect to the others.

The restriction that the sum of partial moment supplies must vanish places a restric-

tion upon the coefficients. Truesdell showed that this restriction leads to the necessary

and sufficient condition
n0

1 ( W(  i = 0 (2.105)i--

where the scalar coefficients Lk ) relating velocity of the kth constituent with its par-

tial momentum are uniquely defined for k ;d j and must vanish for k = j For a binary

mixture, this implies symmetry with respect to j and k.

Mokadam [100] proposed that constitutive equations for the diffusive force have

the form

a b
a v- T i (2.106)

Crochet [37], assuming the existence of an energy function for the mixture,

showed that under isothermal conditions and in the absence of chemical reactions, the

constitutive relations will involve deformation gradients, deformation rates, velocities, 

and relative vorticities. For the linear theory of irrotational relative motion, in the

absence of chemical reaction and inertia effects, and non-Newtonian behavior in a bina-

ry mixture of a fluid and a solid this immediately leads to an expression of the type

(2)_(2) (2.107)p, -- r+p b -- C.v(.17
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The inverse form of this equation is the well-known d'Arcy flow rule [120,141] Biot

[11,14-21] and earlier investigators had used this rule as the starting point for their

theories. The observation of linear dependence of one-dimensional water flow and the

potential gradient has been extended to two and three-dimensional flow. The constant

of proportionality was enlarged to have the nature of a second rank tensor transform-

ing the potential gradient to the flux vector. The permeability tensor is generally

assumed to be symmetric correponding to Biot's assumption of the existence of a dissi-

pation function. Nonhomogeneity of the solid and spatial variations in fluid properties

have been allowed for by assuming the components of the permeability tensor to be

spatially varying. The tensorial character has been used to admit hydraulic anisotropy.

In case where the solid as well as the fluid are in motion, d'Arcy's law has been

applied to the relative velocity of the fluid with respect to the solid matrix (e.g.

[14,55D.

Schifffman (144] wrote the following equations for coupled mass and heat flow

hi _C -D. I iT

= .K T 2 ' (2.108)

T

where T is the temperature.

Mokadam [100-102] studied the thermodynamics of d'Arcy's law under multicom-

ponent flow. Setting up an expression for rate of increase of entropy, he wrote, for

the flow of n fluids through a rigid solid:

hi -C -Am -D. T2 '

-m.- -Em -F M (2.109)

- -Gm-K T
T i 1 D.

L ____
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where h,, il, vp, Di, denote, respectively, components of the heat flux, the diffusive

flux,the mass velocity, and the diffusive force vector. jm is the chemical potential of

the mth constituent. For isothermal flow, in the absence of chemical reactions, this

equation merely indicates the temperature dependence of the permeability tensor.

The dArcy fluid flow equation has been generalized still further [58,9], and

indeed forms part of the general phenomenological equations given by Onsager [118]

These express the effect of simultaneous presence of fields of mechanical pressure, elec-

tric potential, temperature and chemical concentration. The general relationship is

expressed as

J, - LPFj (2.110)

where Ji are the fluxes vi7, mass flow, heat flow, electric current, chemical diffusion.

F, are the Prigogine forces [59,1181 L, are components of a positive definite symme-

tric tensor. The components L. have to satisfy the Curie-Prigogine principle and in

some cases of system symmetry, Lj, would vanish where the tensorial rank of the

"forces" Fa and the "fluxes" J, are not the same. Onsager [118] expected the relationship

to be symmetric Le, Ij = L,. Evidently, the Onsager equation, proposed originally for

small perturbations on an equilibrium state, is a restricted type of relationship, assum-

ing a quadratic form for the entropy rate function. In general, J, can be treated as

functionals, and may depend linearly or nonlinearly on the spatial gradients, of all

orders, of the potential fields and their history. This has been discussed by Coleman

[36] in the case of heat conduction. The same type of reasoning would apply to other

flux phenomena, and the only thermodynamic restriction is that the scalar product of

flux and force be non-negative (1641

Ghaboussi [54 ] pointed out that Biot's [17,181 formulation for momentum balance

may be regarded as a generalization of (2.107) to include inertia effects in the body

I*
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force term giving, for no chemical reaction and isotropic fluid stress, a specialization of

the more general relationship,

P --- +, p b',(2 _-2 ) -- Cv (2.111)

Using the definition of pi, (2.69), a general relationship based on the correspondence of

pa and the relative velocity v()-v,.)is

W 2(bp 1 (2)i - - c v. -C.Vj (2.112)

b). Stresses

It has been difficult to define the dependence of components of the partial stress

tensors upon the kinematic variables and densities of the constituents of a mixture. In

his earlier work, Adkins [1,2] assumed that the stress in each constituent depended

upon the density and the kinematic quantities associated with that constituent only.

Green [60] admitted interdependence of partial stresses of each constituent upon the

kinematics of all. This was in line with the principle of equipresence. However, to

make the independent variables distinct for various constituents, Green [60] stipulated

that the partial stresses for any constituent would depend upon the densities, velocities

and antisymmetric deformation of all constituents but only on the symmetric part of

the deformation gradient of the constituent itself. Invariance of stress under superposed

rigid body motions and under superposed uniform rigid body angular velocities of the

mixture as a whole showed that, for a binary mixture, the velocities and the rotation

tensors must occur as difference terms in the set of independent variables. Mokadam

[1001 assumed the stress tensor to be a linear function of velocity gradients. Carroll

[27] and Morland [103-106], among others, also assumed that the shear traction is car-

ried by the bulk solid and is related to changes in pore geometry. The hydrostatic

stress components in the solid and the fluid were expected to cause intrinsic volume

changes in the constituents.
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Bedford [9] pointed out that fluid-saturated porous media fall in the clas of

immiscible mixtures. The constituents of such mixtures remain physically separate on

a scale which is large in comparison with molecular dimensions. This immiscibility

has two important consequences. Because of physical separation, in some local sense,

each constituent will obey the constitutive relations for that constituent alone. ALso,

the constituents intrinsically have microstructure defined by the inter-faces which sepa-

rate the constituents. To set up macroscopic constitutive relations, one approach would

be to postulate these relations directly as described above. Another alternative would be

to relate macroscopic behavior to intrinsic properties of the constituents. The simplest

theories involve the volume fraction of the constituents in addition to the usual vari-

ables. Morland [103] pointed out the meaning of deformation and stress associated with

the continuum model of each constituent. In particular, the partial density variation is

not the density variation of the constituent since the mixture postulate eliminates refer-

ence to the actual volume occupied by each constituent in an immiscible mixture.

Terzaghi [161] introduced the concept of effective stresL This was defined to be

the stress component causing deformations of the soil. For hydrostatic pore-water pres-

sure acting on incompressible soil grains, the entire deformation of the soil was

assumed to be due to changes in the pore volume and pore geometry. For this case,

Terzaghi (161] called the partial solid stress the effective stres related to deformation

of the solid. Biot [11] regarded the total stress and the fluid pressure as the mechani-

cal variables. It was found (e.g. [113D that the fluid pressure did in fact influence the

effective stress-strain relationship when the solid grains had compressibility comparable

to that of the matrix as a whole and the fluid was not incompressible. To allow for

this the effective stress related to deformation was defined as

t = t. -c 78. (2.113)

-"t 1) +( I -c)r8 (2.114)
) mj
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where c - 1 implies Terzaghi's definition and c - 0 would correspond to total stress

being regarded as effective. Suklje [160] discussed selection of appropriate values of c.

Schiffman [143] expected c to be between the value of porosity and 1. This was based

on the assumption that the pore fluid pressure may not act over the entire area of

surface elements but only over a part. This fractional area of action of the fluid pres-

sure would be bounded below by the porosity and above by 1. Several investigators

confuse the effective stress with the partial stress. This is due to the dual definition

originally given by Terzaghi. The term "effective stress" used in this report is the

stress component causing deformations of the solid and is thus defined completely by

these deformations. The partial stress in the solid could conceivably be related to quan-

tities other than the deformations of the solid. Verruijt (167,168] used the term

"intergranular stress" for the difference between the total stress and the intrinsic pore-

water pressure assumed to act over 100 percent area. The relationship of "intergranular

stress" and the "effective sress" with the partial stress which appears in equations of

balance of momentum needs to be established. Considering the solid grains to be com-

pressible, Nur [113] derived the equation

c = 1-K/K3 (2.115)

where K. K, are, respectively, the bulk and the intrinsic compressibility of the solid,

For incompressible grains and highly deformable pore space, K/K,=0, and Terzaghi's two

definitions coincide. Suklje (160] suggested, without proof,

c = 1-n() K -  (2.116)

Schiffman [143] gave a more general form allowing fluid pressure to be a second rank

tensor and c a fourth rank tensor, i.e.,

t=j = tij - Alij tk (2.117)
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Carroll [271 carried out a similar development. These approaches were based on superpo-

sition of effects of the hydrostatic stress and the stress deviation. Carroll [271 deter-

mined, for the linear case, the relation

t %j- 1P IS, nr n (2.118)

where F,,, are components of the elasticity tensor for the dry solid material and

those of the intrinsic compliance under hydrostatic stress. Biot [18] defined effective

stress as

t1j = t ij- a r8ij (2.119)

and assumed t',, to be the quantity related to solid deformation. This coincides with

Terzaghi's concept of effective stress for a = 1.

Garg [491 following Haimson [731 proposed a dual definition for effective stress.

For strength of rock, he would set c - 1 but for constitutive relations another value

of c would be used.

Carroll [28] introduced intrinsic solid stress on the solid particles and an effective

stress influencing deformation of the pore space. Kenyon [83,84] also considered the

effect of grain and fluid compressibilities and introduced material parameters to charac-

terize this dependence. Contact stress in the solid and the bulk stress independent of K,

were used.

For large deformation, an incremental form of the stress tensor was introduced !

by Biot [201 Carter [30] and Prevost [121] used the Jaumann stress-rate to ensure

frame indifference.

IN •



44

Form of the Stress-Strain Rel alons.

Gibson [55] expected the effective stress to depend upon the deformation or the

rate and history of deformation of the solid skeleton. The fluid pressure was expected

to depend upon the fluid density in an isothermal system.

Tsien [167] proposed a linear elastic isotropic relation for the partial soil stress in

terms of the soil strain using Terzaghfs definition ie c=l in (2.113). Biot [il]

assumed a quadratic energy function in the change in water content per unit volume

of the solid, and the soil strains leading, for isotropic linear elastic soil and incompres-

sible fluid, to

r = Mekk + NO (2.120)

and

tij = 2 Aei. + Xekkij + M08ij (2.121)

In later work, [17] the total stress was replaced by the partial solid stress. In exten-

sion to anisotropic elastic [15,161 solid and compressible fluid the relationships for the

total stress and the intrinsic pore-water prsmure were stated as

t(1) = ( ) +e M "Mij (2.122)

"= (1) + M (2.123)

An alternative form of the above relationships, assuming M. = aM8. and t,= t', + crf.8

[16,18,19] is

t = E pe( + cxM8 (ae + ) (2.124)

and

= otMek-+ MC (2.125)

Here a is a measure of compressibility of the solid particles. This form was used by

Ghaboussi (53,54] for development of finite element solution procedures. Garg [501 wrote

the constitutive relations for an isotropic system in the form
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t () ( ) , (l) - 8 (1tj-"akk ij " "
ekk ij /JLij -3ijeIkk"

(2.126)

n r =T C(1) (2)r () -- b e Oekk

Here A is the bulk shear modulus of the porous solid and a,b c are functions of the

volume fractions of the constituents, the bulk modulus of the porous solid, and the

intrinsic bulk moduli of the fluid and the solid. The constants, for isotropic elasticity

have been shown to correspond to Biot's and to depend upon the properties of the con-

stituents and their volume fractions.

Similar construction was used for viscoelastic soils [12] In [20] the fluid strain

was again replaced by the change in water content. The same concept was extended to

the case of finite elastic deformation [211

Lubinski [931 assumed that the total strain of a bulk porous solid can be

expressed as a summation of the strains due to pore-water pressure and strains due to

stress acting on the solid skeleton. He proposed relations of the type

t , = E e (1) +(n(l)r- ,8 (2.127)Ij klij kI i

V" =Me1) +N(n (2)_-n (2.128)

where y, M, N, are material constants. Krause [86] added terms to the right side of

(2.120) to reflect linear dependence of the fluid pressure on the deformation rate of

the fluid. This assumes a viscous component for fluid flow. Adkins, in his earlier

theory [1,2]. assumed that the stress in each constituent depended only on the density

and the kinematic quantities associated with only that constituent. Nur [113] assumed

the effective stress, given by (2.113) along with (2.115), to be related to the soil

strains This admitted a certain dependence of the partial soil stress upon the fluid

4 pressure. Explicitly,

U *
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tij= tlj +1 - OWN~i = C.Pje (2.129)

Hence

0j = -1)1)8 (2.130)

These approaches were based on the superposition of effects of the hydrostatic strew

and the shear stres, Carroll [27] determined, that for the linear case, (2.130) would be

=j - rE . "'jt r (2.131)

where E ,j are components of the elasticity tensor for the dry solid material and C")

are those of the intrinsic compliance under hydrostatic stress. This formulation was spe-

cialized to allow for the presence of internal symmetries. For isotropy, the formulation

reduces to Nur's [113], Schiffman [143] proposed a more general form of (2.131) viz.,

0 = (1) ( _ . (2)
ij --" (jij 8 k 8 - . t ki (2.132)

The quantity A,,, was termed the soil-water interaction tensor. Garg [491 obtained a

relationship between the intrinsic and the bulk behavior of rocks under hydrostatic

strew.

In extending the theory to the nonlinear case, Westmann [170] assumed the par-

tial solid stress to be a function of the deformation tensor for the solid and the rate

of deformation (Eulerian description) of the fluid. The fluid stress was expected to con-

sist of a hydrostatic component and another component depending upon the same quan-

tities as the partial solid stress. It was noted that in this formulation it would be dif-

ficult to design experiments to evaluate the parameters. A simplification proposed

assumed the fluid pressure to be hydrostatic and related to the velocity field through

d'Arcy's law. This is similar to Sandhu's [131-133] argument that the constitutive equa-

tion for diffusive resistance is a sufficient relationship between the fluid partial stress

and kinematics of the mixture. Westmann [170] wrote relative velocity as a function
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of the partial fluid stress, the diffusive resistance and the Cauchy deformation tensor

for the solid. This would reflect, among other factors, the dependence of permeability

on the porosity of the solid.

Morland [103] and Gar& [49] assumed the intrinsic stress in each component to be

a function of the deformation of that constituent only and having the same form as

for a single material Thus

t We = f[e(k81 (2.133)

The bulk stresses and deformations were expected to be related to the corresponding

intrinsic quantities through scaling functions. Thus, the bulk stress in the kth constit-

uent is
() (k) (k)"

t . = n t.W (2.134)

For linear isotropic elastic rock
t(1) (1),() t

j =i n 11 ej (2.135)

where the subscript D denotes "dry" rock. The bulk deformation gradient was related

to the effective deformation gradient as:

Fij = [n(0)/(i) J l) (2.136)

The relation between the deformation gradient and the partial soil stress was expected

to be the same function f as for the intrinsic quantities. The isotropic pressures in the

fluid and the solid were assumed to depend upon'the volumetric strain of both the

constituents, ie. 0

- ae(1) + be (2) (2.137)

4 =ce( + de(2) (2.138)mm mm

However, unlike Biot, the existence of an energy function was not postulated so that

the constants b and c in (2.137) and (2.138) do not have to be equal. Morland

I"
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expressed the coefficients in terms of compressibilities of the fluid and the solid, and

the bulk shear modulus of the mixture.

Carroll [29] postulated the following relations for a fluid-saturated solid:

L Relation between stress in the mixture and stresses in the constituents:

tij= ( n () (2.139)

ii. Solid stress-strain law

=-K (2.140)
V41)

where the symbol A indicates change in the quantity following it.

iii. Effective stress-strain law-

1 1j tA-n"= '- (2)
- -- K n() (2.141)

Combining these relationships they obtained the bulk relations for the mixture.

Thermodynamic considerations.

Adkins [3] and Green [60] admitted interdependence of stress of each constituent

upon the kinematics of all. This was in line with the principle of equipresence stated

by Truesdell [164 In application to elastic materials, the existence of an energy func-

tion for the mixture was assumed by Biot [11,14-16,19-211 This has been consistently

followed by numerous investigators (e.g. [6,7,25,37,39,62-67,159D. Sandhu [131-1341

pointed out that as the mixture could not be regarded as a continuum in motion, it

was inappropriate to assume energy functions for it in the form that has been popular.

Sandhu [131-134] Westmann [171] and Morland [103-105] followed Adkins' [2]

original idea that the stresses in each constituent depend upon the kinematics of only
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that constituent. However, Morland [103-1051 used this for the intrinsic rather than

the bulk stresses. This brings back some dependence of the partial solid stress upon the

fluid pressure because the porosity was postulated to be a linear function of the par-

tial stresses.

Seeking constitutive equations for internal energy, entropy, heat flux vector, par-

tial stresses and diffusive resistance vectors p, and the quantity q-hjnj in the case of

mixture of two Newtonian fluids, Green [62] assumed these to depend upon the densi-

ties of the constituents, the velocities, the gradients of velocities, and the temperature.

For the heat flux vector, the temperature gradient replaced the deformation gradients.

Discussing thermodynamics of fluid flow in a rigid porous medium, Mokadam

(101,1021 pointed out that dArcy's law is valid only for isothermal flow in which the

inertial and viscous effects are negligible. Also that the rate of entropy production

must be non-negative separately for terms involving quantities of different tensorial

ranks. Crochet [37] applied thermodynmic considerations to the flow of a fluid through

an elastic solid. Atkin [61 explicitly stated the form of these constitutive assumptions

for flow of a fluid through an elastic solid. He also presented an alternative method

of deriving the linearized theory of elastic solid-viscous fluid mixtures and the thermo-

dynamic restrictions imposed on this theory by the entropy production inequality. In

later, work. Green [67] based the thermodynamic restrictions on the behavior of each

constituent on the requirement that suitable combinations of the equations for individu-

al constituents should yield a single entropy production inequality for the mixture as a

whole. Bowen [23] noted that these formulations lead to the result that, in equilibri-

um, the partial free energy density of a given constituent is independent of the defor-

mations of the other constituents. Also that such independence fails to be confirmed by

experiments on fluid mixtures. Muller [108] showed that if gradients of densities of

U
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the constituents were included among the constitutive variables, this difficulty would

not ane. Some investigators have proposed use of an entropy production inequality for

each constituent. Bowen [23] considers this to be too special.

Morland [103-105] did not assume the existence of an energy function for the

mixture but still admitted interdependence. This implies admitting a posibly nonsym-

metric constitutive relationship of the type proposed earlier by Schiffman [1431 For c

- porosity, the constitutive equations for stresses become uncoupled.

Crochet [37] started by admitting fairly general constituive assumptions in line

with Truesdell's [163] principle of equipresence, and then determined the restrictions

placed upon these general constitutive relations by thermodynamic considerations. This

approach is similar to that used by Noll [III] and Coleman [361 Crochet [37] showed

that the restriction of nonnegative entropy production requires that the entropy and the

internal energy be independent of the deformation rates, relative velocity and the temp-

erature gradient. Green [66] extended Crochet's [371 work to anisotropic solids and to

include initial strems.

d. Constitutive Relations for Porosity.

Gibson [55] treated porosity as a function of effective atm and proposed compliance

relationships in the form

n(2) = f(tij ,Xj,t) (2.142)

Walsh [1691 regarded the pore space or the volume fraction of the pores to be a

function of the solid stres. This leads to the relationship:

dn (2) 1 dV12)  n(2) dV 2 dV") V12) dVV V -dV) Vd2 (1) (2.143)

) V d t ) V d t ) V d t' ) V2 d t
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.Garg [491 pointed out that Walsh's analysis was acceptable for very dense rock. For the

general case, they introduced bulk and intrinsic solid compressibilities and set up more

general expressions. They proposed constitutive equations for porosity based on the exis-

tence of an energy function.

Aifantis [4] assumed effects of changes in fluid pressure and the solid stress to

be additive and proposed a compliance relationship
--(1)

An( 2 ) = aAIT + bAtkk (2.144)

Assuming the intrinsic properties of any constituent are not affected by the pres-

ence of the other constituents, Morland [1031 proposed a constitutive equation for poros-

ity in the form

n(2) n(2)1 +at(')+ b) (2.145)
o

To include dilatancy, the relationship was generalized further to

n( 2) )(1+ it( ir) (2.146)

2.3.2.7 Comments.

Various approaches to description of the constituents and the mixture as well as

description of their motion, formulation of the equations of balance of mass, linear

momentum, angular momentum, and rate of energy, and the constitutive relations have

been discussed. In most theories of mixtures, deformation is referred to an initial con-

figuration for each constituent and motion to the place coordinates. Also the equations

of balance are written for a fixed volume in space. This approach may not be conven-

ient for soil-water mixtures.

Truesdell [164,166] postulated equations of balance of mass, linear momentum, 0

moment of momentum and energy such that the form of the equations was the same

for each constituent and for the mixture. The notion of motion of a mixture as a

Slm mm 8m m m m m m~ -
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whole was introduced. Indeed, Truesdell would require the form of the equations of

balance for the mixture to be the same as for a single materiaL To accomplish this

identity of form, the total stress tensor, the total heat flux vector, and the specific

energy supply had to be specially defined and did not equal the sum of the corre-

sponding quantities for the constituents. The specific energy (internal plus kinetic) of

the mixture was, however, equal to the sum of the corresponding quantities associated

with the constituents. The existence of the mixture as a continuum in motion with

acceleration derived from the barycentric velocity is implied in this line of thought.

The analysis was founded on the so-called fundamental identity involving "material

derivatives of the mean value". Whereas these can be accepted as hypothetical entities

for simplification of analysis, it is difficult to assign a physical meaning to them. This

material rate has, in Atkin's [7] words, "no particular physical significance". This is so

because the rate is executed not on a material particle but on a center of mass. The

mixture, at any instant of time, has been constructed by superposition of constituent

particles, is not a set of particles, consists only of centers of mais, and is defined only

for the particular instant of time. It cannot be regarded as a continuum, consisting of

a set of non-penetrating particles, in motion. Atkin [7] pointed out that the mixture

density cannot be associated with a material in the physical sense. Sandhu [133,1341

pointed out that the mixture defined above has a physical existence only in the case

of no relative motion between constituents. For this special case the mixture will have

motion and deformation as a material body and the development of equations of

motion for the mixture is meaningful, for example, in the post-liquefaction stage. How-

ever, in study of wave propagation leading to liquefaction of soils, it is of little inter-

est. If relative motion is present, the mixture does not satisfy the axiom of continuity

and its corollary, the principle of impenetrability. Accordingly, the mixture density,

momentum, moment of momentum and energy defined by Truesdell are only mathe-
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matical entities without any physical interpretation. These quantities cannot be regarded

as functions of time associated with a set of physical particles. Truesdell's third postu-

late, therefore, appears to be irrelevant to the development of a general theory.

Chao [34] noted that combining the balance equations of constituents to obtain the

balance equations of the mixture can lead to errors. As an example, the absence of

inertial coupling forces in the momentum equations of the constituents was cited. This

is contrary to Biot's "mass coupling" assumption.

On the other hand, Green [62] considered the concepts of stress, heat flux, and

energy supply to be primitive to each constituent and to the mixture as a whole as

well. The additive property of stress, heat flux, and the energy supply was postulated

and the balance laws derived from the frame invariance of a rate of energy equality.

The energy density of the mixture was seen to be different from the sum of energy

densities of the constituents. This was attributed to interaction between the constituents.

Green [66] established a relationship between these quantities.

The balance equations due to Truesdell [164,166] and to Green [66] have similar

form and are essentially equivalent but the quantities appearing in the two sets have

different interpretations based upon the relationships postulated between the quantities

associated with the constituents and with the mixture. Gurtin i69,70] and Morland

(1031 support the additivity of partial stresses on the ground that tractions are additive

and Cauchy's stress principle should hold for total stress and total traction as well as

for the constituents. In Green's theory, the equations of mass and momentum balance

are derived from the material frame invariance of a rate of energy equality. In

another discussion the heat fluxes and the energy supply were assumed to be additive.

In another, more recent version of the theory, Green [64] made the role of interactions

between constituents explicit by writing the rate of energy equality for each constitu-

ent.
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Bowen [24] postulated the point form of the rate of energy equality and pointed

out the effect of certain approximations. He claimed that Green's theory is a special

cae of Truesdells. This is not true. The interpretation of quantities appearing in

Truesdelrs equations is quite different from that of similar quantities in Green's theory

because the two formulations are based on different definitions for the quantities asso-

ciated with the mixture in terms of those for the constituents rather than due to any

approximation.

Westman [1701 noted that while writing mass continuity relations care must be

exercised because the volume of each continuum phase is not the same as the true vol-

ume of each material. For the case of initial stresses, equilibrium must be satisfied in

the initial as well as the deformed configuration realized after incrementation of stress

In recent work by Gurtin [69,70] Oliver [116,117], William [1711 and Sampaio

[129,130] the equations of balance of momentum and energy differ from those of

Truesdell [163,165] and Kelly [821 They showed that extension of the traditional theory

for single materials to mixtures by simply replacing the forces by "total force" is inad-

equate to express balance of forces for other than pure constituents. In addition to the

partial stress for each constituent, they obtained embedding stresses governed by addi-

tional balance of force equations.

Several investigators have introduced volume fractions as additional variables in

theories for compressible materials. The balance equations have been written in terms

of relative motion and porosity, which is essentially a measure of relative deformation.

Fukuos [461 equations of mass balance may be regarded as an extension of Gibson's [551

approach of. referring to the fixed set of particles in the reference configuration.
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In Gibson's theory of one-dimensional nonlinear consolidation, the equation of

equilibrium of vertical forces associated with reference volume of the solid in the ref-

erence configuration were written for the current configuration. The density was relat-

ed to the densities of the constituents in the current configuration which in turn

depended upon the volume fractions of the constituents. Beacause, in this representation,

the description of the solid phase is unaffected by deformation, the equation of mass

continuity for the solid is simply the equation relating the current density to the ref-

erence density of the solid.

The definition of diffusive resistance or the interaction force, given by Green

(62-67] appears to be appropriate. as also writing constitutive relations for it in terms

of relative velocities of the constituents. For the simple case of a binary mixture, e.g. a

saturated soil, the linear dependence of the diffusive resistance upon the relative veloci-

ty is essentially a statement of the phenomological observation by dArcy. Biot assumed

the existence of a dissipation function, quadratic in relative velocity. This corresponds

to the assumption of a linear dependence of velocity upon the pressure gradients. Moka-

dam [100] pointed out that dArcy's law is valid only for isothermal flow in which

the inertial and viscous effects are negligible. Generalizations of dArcy's law to thermo-

mechanical mixtures and simultaneous mechanical and chemical diffusion along Onsager's

principle form a part of the general theory of mechanical diffusion presented by

Truesdell [1651

For stresses in the constituent, several descriptions have been used. Constitutive

equations need to be written for the partial stresses that appear in the equilibrium

equations. Biot [18,19] wrote the equations of momentum equilibrium for the mixture

using the total stress. In soil mechanic, it is well known that constitutive equations

for the total stress are very sensitive to the pore-water pressures and the effective
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stress is preferred for the purpose. Terzaghi [1611 used a dual definition for effective

stress. It appears reasonable to define it as the component of soil skeleton stress which

is related to the kinematics of the soil alone. According to the other definition the

effective stress is the difference between the total stress and the intrinsic pore-water

pressure. Verruijt [167,168] calls it intergranular stress. This definition appears to be

unnecessary except in the case of the so-called double-porosity soils in which the soil

gram compressibility is taken care of separately from the deformation of the soil as a

whole. The relationship between the deformations of the grains and the voids on the

one hand and the total soil mass on the other has been established for the double-

porosity materials by several investigators [eg. Carroll1.

Biot's [181 and Crochets [37] assumption of the existence of an energy function

for the soil-water mixture is open to objection. The mixture consists of centers of mass

and not non- penetrating material particles. As such it does not satisfy the axiom of

impenetrability and it is not correct to assign deformation, material rates, energy etc. to

this entity. Thus the stre-strain relationships for the fluid and the solid may not be

derived from an energy function. Biot's [18,19] theory based upon the existence of an

energy function quadratic in the strains of the soil and the water content or the den-

sity or the isotropic strain in the fluid is thus arbitrary and restrictive. Garg's [48,49]

formulation also is similar and the constants can be shown to correspond to Biot's.

Garg related these to the properties of the constituents and the volume fractions.

The argument over whether the stresses in any constituent depend upon the kine-

matics of that constituent only or that of all the constituents is easily resolved noting

that the partial stress need not coincide with the effective stress. The difference

would depend upon the compressibility of the fluid and the soil as well as upon the

connectivity of the pore space. We find Bedford's (9] argument that, in some local
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sense, each constituent will obey the constitutive relations for that constituent alone

quite appealing. To set up macroscopic constitutive relations, one approach would be

to postulate these relations directly and the other would be to relate macroscopic

behavior to intrinsic properties of the constituents. Apparently, the thermodynamic

restrictions on entropy production as well as the notion of energy density are applica-

ble to each constituent. Bowen's [24] comments regarding mixtures of fluids need fur-

ther careful investigation.

Morland [103-105] did not assume the existence of an energy function for the

mixture but still admitted interdependence in constitutive relationships This implies

admitting constitutive relationships with possibly nonsymmetric coupling effects of the

type proposed earlier by Schiffman [143

Some theories involve the volume fraction of the constituents in addition to

the usual variables. Morland pointed out that the partial density variation is not the

density variation of the constituent since the mixture postulate eliminates reference

to the actual volume occupied by each constituent in an immiscible mixture. A correct

theory would ensure that deformation be associated with a set of particles rather than

with a fixed volume in space.

For a statistically isotropic saturated material, Biot expected the kinetic energy of

the saturated soil to be quadratic in the velocities of the fluid and the soil and a

coupling term was included. This introduced an inertial coupling between the soil and

the fluid. It is difficult to assign numerical values to the various quantities that arise

as a result of this coupling. Implementation of this theory in a finite element com-

puter program, and a preliminary parametric study to investigate the efect of this

coupling on the dynamic response, indicated that the effect would be insignificant.

However, further study of this particular feature is needed.
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It appears that a theory of dynamics of saturated soils should use a convected

coordinate system to define the motion of the soil so that the same set of particles

constitute the reference volume. The flow of the fluid should be considered as relatie

to this reference set of soil particles. Stress would be defined in terms of these con-

vected coordinates and the balance equations would then be written for the reference

set of particles. This would represent a generalization of Gibson's theory of nonlinear

soil consolidation to three-dimensions and also to include inertia effects. For slow flow

and small deformation, certain simplifying assumptions would lead to Bioes theory. The

soil and water have relative motion prior to liquefaction. At liquefaction, the relative

velocity reduces to zero and the soil-water mixture would move as a single fluid.

Development of constitutive equations would involve the thermodynamics of the con-

stituents including their interaction but it would not include assigning physical mean-

ing to a "mixture in motion". Constitutive and inertial couplings might exist. How-

ever, symmetry of these couplings cannot be apriori claimed on the basis of the

existence of energy functions for the mixture. The next section describes such a theory

developed by Hiremath [75].



Section MIE

A DYNAMICAL THEORY OF SATURATED SOILS

3.1 INTRODUCTION

In existing theories of mixtures the multicomponent mixture has been regarded as

a set of superposed continua in motion. The mixture, at any instant of time, has been

defined as a set of particles constructed by superposition of constituent particles. In

reviewing theories of mixtures, including their possible relationshio with mechanics of

saturated soils and liquefaction phenomena, an important finding was that the notion

of the mixture as a continuum in motion is inadmissible except in the case of no rela-

tive motion between the constituents. Liquefaction is primarily caused by the relative

motion of soil and water and, therefore, a correct theory of liquefaction cannot be

derived from the assumption of the saturated soil being a mixture in motion as a con-

tinuum.

Because the mixture cannot be viewed as a continuum in motion, it appears inap-

propriate to define energy functions on the "mixture" consisiting of centers of mass.

This implies that in setting up constitutive relationships for the mixture, one cannot

invoke the existence of an energy function.

Some investigators (e.g, (46,76,86D considering the special problem of flow

through deformable porous solids, have attempted to write the balance equations in

terms of relative motion and porosity, which is essentially a measure of relative defor-

mation. It would appear that a theory based on balance equations written for a refer-

ence set of particles of the porous solid would be the most appropriate for this case.

Gibson [55] developed such a theory for the quasi-static problem.

59-
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Hiremath developed a [75] theory of dynamics of saturated soils based on use of

convected coordinate system to describe the motion of a fixed set of soil particles in a

reference volume and regarded the flow of water to be relative to this volume of the

soil (Item 4.5 in Appendix B). This theory may be regarded as an extension of the

concepts presented by Gibson [55] for the case of one-dimensional quasi-static deforma-

tion of soils, to three dimensions and to include inertia. In the remainder of the sec-

tion we summarize the salient features of this theory.

3.2 KINEMATICS

Description of motion, deformation and stress in a single continuum using con-

vected coordinates is well known [112] and is summarized in Appendix A. Here we

describe the simultaneous motion of a compressible solid and a fluid with low com-

pressibility. A material volume V0 in the reference state C. upon motion and defor-

mation, occupies a volume V in state C. The material volume throughout its motion

encompasses the same set of particles. The convected coordinate frame, assumed for

convenience to be rectangular cartesian in the reference configuration C, is, in general,

curvilinear in any other state. The strain in the solid, vy, is defined as (A.108)

(1)= - E)= -I [u('). + u(,) j+ UM)  u ( 1)  ] (3.1)

ij ij "2 i m,i M.j

Here 9) are components of the Green's strain tensor and u(i) are components of the

solid displacement referred to the cartesian system in C,. The fluid is assumed to be

isotropic and, in view of its low compressibility, the components of the strain tensor

for the fluid, -,y,, referred to a cartesian system in C, are

(2) () = (2) (3 .)
kk kk k(k
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3.3 BALANCE LAWS

3.3.1 Man Balance of the Solid

If p, and po) denote the mass densities in the configurations Co and C respectively, of

a volume element containing the same set of solid particles,

PO no PO (3-3)

and

p n(1) (3.4)

in which n4l) and n(l) are the solid volume fractions in the initial and the current con-

figurations, respectively, and a superposed asterisk denotes an intrinsic quantity. This

leads to an equation of ma- balance in the form,

Sn o  v O = n ()dV (3.5)

V. and V denote volume of the same set of particles in C, and C, respectively. Using

(A.126),

f[(' (l) - /-G p( )*n()] dV= 0 (3.6)
0 0 0

The point form of this equation is

P0  o- p n (3.7)

If the solid is incompressible, 41)0 p(DO and

0) = n (3.8)

0
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3.3.2 Mau Balance of the Fluid

The motion of the fluid is relative to the solid and the fluid itself does not have a

reference state. Man continuity of the fluid constituent is described for a solid vol-

ume in the current configuration.

Consider a rectangular parallelopiped of the solid at point P. in the reference con-

figuration C,, which corresponds to a skew parallelopiped at point P in the current

configuration C. The parailelopiped in C is made up of surfaces x; - constant and

34 + dA - constant (Figure 3), and during motion, encloses the same solid particle

Recalling (A.110) and (A112), the velocities of the solid and the fluid in terms

of the base vectors a, and G, (or G') are

v(1)  v( ')m G = v( ) Gm u(1) e (3.9)

and

V(2)  v(2)m G. v ( 2 ) Gm  -u( 2 ) e (3.10)

The components uV (k =1,2) are quantities amociated with the reference state. The

face of the parallelopiped formed by the sides dx2 and dx3  in the reference state

becomes an area formed by the vectors G. dx2 and G, dxs in the deformed state. Thus,

the maw flux per unit time entering this face is

(2) p(2? [u(2) 0 u X dxl Id (3.11)

The m- flux leaving the opposite face is

n(2 ) I(2)I 2) -- u1dx2 dx3 + (1 {n(2 p II - u(' I dx 1) dx2 dx3  (3.12)

ax

The net rate of gain including the fluid flow in all the three-directions is,

n p [ u t']dx 2dx 3  (3.13)

The rate of increase of fluid within the deformed parallolepiped is
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at in2 p 0 dx dx z dx ]  (314)

Adding (3.13) and (3.14) and cancelling dx dx2 dx3 , the equation of fluid maw continu-

ity is

[(2) (2)0 rG + _L1 (n(2)p( 2) ii) 1) =0 (.5
at -x J (3.15)

3.3.3 Balance of Momentum of the Fluid Phase

Consider the elementary parallelopiped that is rectangular in the reference config-

uration and is transformed into a skew parallelopiped in the current configuration (Fig-

ure 4).

Let -t denote the strew vector of the fluid phase acting normal to the surface

formed by the vectors G2 dx2 and G. dx3. The net force due to this stress acros the

surface is, noting (A.132) and (A.142);

-t(2)f \G dx2z xI = c) x2dx 3  (3.16) !

The internal forces on the six faces of the parallelopiped then are;

_-4) dx 2dx 3 , T 2) dX dX3 +---- _l 4,)dCX Idx 2 dX' 31711 ox 1 0

_ p2)() p(2I)lx 3), p2)ldx] ,dX _dx42)dx Id 2d (3.17)
3 3 3 3

8'

Similarly the net body forces, inertial forces and viscous coupling forces, respectively.

acting over the deformed volume ,/-dx' dX2 dx3 are;

g2V)2) p( 2) 2) 2 J'2>] /-f d xdX 23  (3.19)

41
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3 2) dx3dx + A3 T¢:)dx dx dx'
ax

T2)dx' dz 3 + - T)dxI dx 2 dx

*6 0

_ -T2 dxd d x 2

0 x 71, 2) dx'dx3 +..7-. 2 )dx'dX2 d X3

X1

Figure 4: Fluid Equilibrium in the Deformed State
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12 2' X23,
{- D( ~2 - v(,')),- 'v (2) _ v2)), - 'v (2) - v( t) }/ G dx' dxd 3  (310)

Summing up the forces and setting the total equal to zero for equilibrium,

.. j 2)~ + IfG 2) F42)_ .f~G 2)( 2)~ _ r .()_VI = 0. (3.21)
axt

Upon use of (A.141), and rearranging

1 J_ [ 7 (2)1j G; + p(2) (2 ) = p(2) f(2) + D (V(2) _ V()) (322)
,f' ax t

Recalling (A.110), (A111), (A.112) and (A.113) along with (A.143) gives

r (2hji + 2) F(2)j = (2) f(2)j + D [V(2)j-_ V(I) j](3.23)

Alternatively, using (A.114) one can refer the quantities in (3-22) to the reference state

C. and write

... LfiGhr(2Xj Z f- .e 2) f 2 e i()( 2 ). P v (U(l2) *I (3.24)M-.r ()izjem] + 'M~ =m fGe, m - D U
O•l m.Jm U m e m

which gives, by (A.150) and (A.151),

in G u + ,f- D (") (325)

or

[S(2)1 + ,/p 2) 0 2)= 4-G 2 )u(2 ) + D(u -u) (326)

For isotropic fluid,

S(2)i = 7 8' (3.27)

Then (3.26) gives,

+ FG p(2 ) 2) =./P( 2
) *j()~ -i")(38

I-G D (3.28

M M M M

4 4
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3.3.4 Balance of Momentum of the Fluid-Saturated Solid

Considering the reference set of solid particles in the current configuration of the

deformed parallelopiped Figure 5, let -t 1 denote the total stress vector acting on the

strained body per unit area formed by the vectors G2 di and Gdxs. The net force

across this surface using (A.142) is,

-TI dx 2 dx 3 = -t dx d 3  (3.29)

The other quantities viz. T2 and T. are defined likewise by cyclic permutation and are

shown in Figure 5. The forces on the six bounding surfaces are:

-T dx2 dx 3 , T dx 2 x3 + --- Ttdldx2dx3

1 011

-T dxIdx3 , T dxIdx 3 + . T2 dxIdx2 dx 3  (3.30)
2 2 122

1 2 1 21 2 3
-T 3 dx dx 2 , T3 dx dx. + - 3 T3 dx dx2 dx3

For F3 = 1t )  = F the body forces and inertial forces acting over the deformed volume

f'G dxl dx 2 dx 3 can be expressed as,

[pF I, pF 2, pF 3] 'Gdx dXdx 3  (3.31)

and

40 1 ,0 + P(2)f, {) + p(2)fL 2 , -{pt jf~3D + P dx2  3

Summing up the forces, we have,

i + /-PF = 'j- U ,JI+ p2 j2q (3.33)

Using (A.141) in (3.33)

[ , I , G) + p F = (I )' + ' (2 f2 (3.34)

Recalling (A.62), and (A.110) through (A.113).

1.~j1, + P FJ p( I)fi+2)2) j (3.35)
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T dxldi2+ T dxI dx
2 dx3

3 33

x 1 x

T dx1dx 3 +-iT dx I dX2 di3

x 3 3

-Tr dx'dX2

0 T1 dx 2 di 3 + T dx'd2 di 3  1

xl

Filture 5: Equilibrium of the Fluid-Saturated Reference Volume in the Current Con-
figuration
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Referring quantities in (3.34) to the reference state C0 and using (A.150) and (A.151),

two alternative forms of (3.34) are,

(sjz ),+ f rp, = . ( 1)) + 4'G P (2)°u (2) (3.36) 4

and

[S' + . = ,r ()p( ) + " ).1 (2) (3.37)

3.3.5 Balance of Angular Momentum of the Fluid Saturated Solid

In absence of body couples, the angular moments of these forces with respect to

the deformed axes along G, are given by, •

-(T XR)dx 2 dx3 , (T XR)dz2dx3+ -- Di(T XR)dxdX2dX
3

ox

0'-_(T2 XR)dxl dx3' (T2 X R ) d:K tI d3 + 2(T2 X R)dxl dX2 tiT3 (3.38),

-(T 3 xR)dx1 d X 2 ' (T 3 xR)dxl dx 2 + -L (T X R)d dJ 2 d 3

For body forces and inertial forces the angular moments are, respectively,

[pF 1 XR, pF 2 xR, pF 3 xRl rG dx 1 dx d X 3  (3.39)

and

[an d (I0(1) + P (2)J 2 } _ j... 1~~) g 2 ) ', {p j . 1) + p ( 2)f J2) ]

XR %/G dxi dx2 dx 3  (3.40)

Summing up the moments, 0

-L (T x R)+(pFX R) ,-_- 1) +p(2) f(2 l x R ,/-GO (3.41)

or, by (A.38) and rearrangement of terms

0Tj + GpF- 'G p(1) f1) + p(2)fL2)h]XR+T, xG i =0 (3.42)

ax

Noting (3.33) and (3.42)

~1
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T xG1 =0 (3.43)

Using (A.141), this gives

4r' jG xG =o (3.44)

or, equivalently-

eijk r
ij = 0 (3A5)

which is same as

'ri' = 7" (3.46)

Further, in view of (A.103),

s=j = 5 (3.47)

The bulk stress tensors, r" and s's, are symmetric. This is in line with Green's [641

assertion that the partial stresses need not be symmetric but the total (bulk) stress is

symmetric.

34 SOME SPFCIAUIZATIONS

34.1 Specialization to One-Dimensional Problem

The direction x, is referred to simply as x and the associated quantities are denoted by

a super- or sub-script x.

a). Kinematical Quantities

From (A.86) and (A.87),

z =z (x,'r) (3.48)

and

x (0 0) = a (3.49)

For the motion to be possible, from (A.5),
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I8I>0 (3-50)

The position vectors of points P0 in C. and Pi rrsetvl,(A7)ad(. )

r =xa =a e (3.51)

K =ze (3.52)

The displacemnent vector, u. is (A.79)

u R- r =u a (3.53)

ui z -x = z- a (3-54)

The base vectors, G., G' and metric tensors G.., G miay be defined for the system x

in the body at time t. From (A.97) through (A,99), we have in one-dimension.

G=R ke-C=+ )e (3-55)

rx(356)

12 ax (3.58)

The line elements are given by (A.101) and (A.102).

2= (3-9)

ds =G dx di

ds 2 = dx dx (-0

The strain tensor, using (A.100) is.

1 1GU-1 - 0uSa (3.61)
T O~a 2 Od Ox

The changes in volume are obtained from (A.123) and (A.126) as,

dV0  dx (3.62)

dV = I-GdV 0  
(3.63)

where,
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G =I I=I( +_OU.)2I= (1+ .. )"=(.-)2 (3.64)

(3.63) and (3.64) give

dV = (1+ J.-) dx (3.65)

ax

The expressions for velocity and acceleration derived from (A110) through (A.123) for

one-dimension are,

v=u•=v'G =vG" (3.66)

f -ue=f1 G =fG 1  (3.67)

b). Mass continuity of the solid.

From (3.7)

P(0 no = ,j-(i)0 n() (3.68)

Using (3.64), mss continuity in one-dimension

p0 o = . p.n (3.69)

This expression is the same as Gibson's [55]

c). Mass continuity of the fluid.

From (3.15)

[n(2) 2 + ({2).2). [(2) _(1)]} =0 (3.70)

at 8

which, upon use of (3.64), is

.. i[n(2)P(2) ." ]+ -- {n( 2)0 [u(2) '(1)]} = 0 (3.71)

This is the same as Gibson's equation [551
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d). Momentum balance of the fluid.

(3.28), for one-dimensional analysis, using (3.64) is;

W!. + P - p- f(2) = P )- - 2 + .a. E~ n2)~ - (3.2) E

If the inertia term is neglected, Gibson's [55] equation for quasi-static analysis is recov-

ered viz.

ax 8X K 3.3

e). Momentum balance of the fluid-saturated solid.

Recalling (3.64), for one-dimension, (3.37) is

S ' =x' '  (3.74)

Ignoring the inertial term, we recover Gibson's [551 equation of motion for the bulk

+ iP (3.75)

3.4.2 Small deformation Theory

Biots [17,191 equations for small deformation theory are embedded in the general

theory presented in this work as a specialization. "Amuming small strain, explicit forms

of continuity equations are not required as the changes in density are small All

quantities are referred to the initial state with rectangular cartesian system as a frame

of reference. In that case, the distinction between the contravariant and covariant com-

ponents dispppears. The kinematical relations in (3.1) and (3.2) reduce to

V(1)(I) [U(1) + U21 (3.76)
ij ~ ' 2 '
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The momentum balance equations in terms of the bulk stress t, and the partial pres-

sure r are obtained from (3.37) and (3.26), respectively, as

ii +pF2  ()) (2( 2).+'[(2) ( ) (3.78)
,t+ p(2)~ = 2)'" (2) + D [ (2) _"u(1)(.8

=p ui  --u )](.8

which is often also written in the form;

'w 20 (2)**" (2) . (2) r"(2)_ "(I)
+p~ l";) Fi=p __P ui  P- n l~ - i (3.79)

K

The above equations are the same as in one formulaion of Biot's theory. Subtracting

(3.78) from (3.77), an equilibrium equation in terms of the partial solid stress is

obtained viz.

1)'() Pn(2)n(2) * (2) j(i)] (3.80)tIJ-(*J P)F= u -/K [ i-- -

Comparing with Biot's [17,18] equations, (3.79) and (3.80) do not have the maw

coupling terms.

3.5 CONSTITUTIVE RELATIONS

The issue of defining mechanical quantities for which constitutive relationships

need to be defined has been discussed in Section II and in the technical report listed as

item 1.2 in Appendix B. The dynamical theory summarized in this section is based on

studying the movement of a connected set of non-interpenetrating particles. In this

theory, the constitutive equations are required only for the partial stresses and the dif-

fusive resistance. Porosity is a quantity directly related to the deformation of the set

and need not be treated as an additional variable. The relative movement between the

pore-water and the reference set of soil particles would apparently be the principal

kinematical variable related to the interaction force. For linear theory this relationship

would reduce to d'Arcy's rule. The stresses in the reference set of particles must be

described in convected coordinates just as the deformation and defromation rates are.
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For the case of rate-independent materials, a theory for a single elastic-plastic material

was presented by Ayoub [8] He used the Cauchy stress as the mechanical variable.

He showed that, for large deformations, the difference between the conventional

description of stress/strain relaions using quantities referred to the original configuration

and the correct description proposed by him would be quite significant. The procedures

and descriptions suggested by Ayoub can be easily generalized to admit possible

coupling between the partial soil stresses and the fluid pressures. There is apparent

need for the development of data on the behavior of saturated soils under large defor-

mations to define the nature of the constitutive relations. Morland's [103] proposal that

the constitutive equations for effective stresses in the porous material be assumed to

have the same form as that for the intrinsic material appears to be attractive but

needs verification. The distinction between the partial stress and the effective stress

would allow for the possible coupling between the constitutive equations for the soil

and the pore-water.

S
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Section IV

SOLUTION PROCEDURES

4.1 INTRODUCTION

The solution procedures for the initial value problem of dynamic response of soil

masses can be classed into the following groups.

1. Exact Solutions

2. Semi-Discrete Solution Procedures

3. Finite Element Solutions

Exact solutions were developed for the linearized version neglecting mass and con-

stitutive couplings and assuming that the water was completely free to move relative

to the soil. This essentially implied a spcialization to Biots theory. The exact solu-

tions described in items 1.14, 1.15, 2.7, 2.8, 3.5 in Appendix B and the semi-discrete

methods described in items 1.8 and 4.2 of the same Appendix were based on this theo-

ry. For the purpose of numerical solution (items 1.5, 1.6, 1.10, 1.12, 1.13, 1.17, 2.3, 2.4,

3.3, 3.4, 4.1 in Appendix B), nonlinearity and couplings could be accomodated to a cer-

tain extent. In this section we describe briefly the results of the research under each

of the three headings.

7

-77 -
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4.2 EXACT SOLUTIONS

4.2.1 Introduction

Exact solutions to Biot's equations of dynamics of fluid-saturated porous media

were obtained by Biot [17-19 Later Deresiewicz [40] Chakraborty [331, and Garg [50]

obtained solutions for various boundary conditions In the present research the work

was extended and computer codes for numerical solution were tested against these exact

solutions. Items 1.14, 1.17, 2.7, 2.8, and 3.5 in Appendix B contain details of this

development. The specific items of research included the following:

a). Garg's fundamental solution for the problem of one-dimensional wave propaga-

tion in fluid-saturated media was integrated to develop solutions for several cases of

surface loading of a saturated soil column of infinite extent [Items 1.14 and 2.7,

Appendix BI

b). In order to obtain a solution to the problems of "strong coupling" "weak

coupling" Garg had made certain assumptions. These assumptions were carefully inves-

tigated. [Item 3.5, Appendix B]

c). Solutions to Biot's equations of wave propagation involving sudden changes in

excitation were developed by separating the propagation of the singularity from the

diffusive process. These solutions were extended to some two-dimensional cases. [Item

1.15 and 2.8, Appendix BI

In the following paragraphs we summarize some of the results of these investiga-

tions.

0 . . . . . . . . . . . . . . . .
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4.2.2 Garg's Solution

Figure 6(b) shows the load for which Garg obtained an exact solution and the

four load cases for which additional solutions were obtained as part of the present

researchL Crarg [13] wrote Bioes equations, for the one-dimensional problem, without

inertial massm coupling in the form;

p> =au,, + cu° i - D(ui-O) (4.1)

p 2 ) = cu +bU, + D(-0) (4.2)

where u, U are the displacements of the solid and fluid respectively. Garg (50)

assumed the displacements of the constituents to be specified on the end x =0 as

u (o,t) f(t)
(4.3)

U (o, t) g(t)

Only the conditions at x =0 were needed as the column was assumed to be of infinite

extent. The initial conditions were;

u(x,O) = uo (x)

U(x,O) = uO(x) (4.4)

u (x,,0) = o (1)

0(X, o) = 0 (Z)

In order to solve the wave equations, (4.1) and (4.2) were differentiated with

respect to the time variable. For homogeneous initial conditions, the boundary conditions

on the velocities of the constituents, assuming they move together at this point, were

u(, t) = (0, t) = (t) (4.s)

Applying the Laplace transform to the time derivatives of (4.1) and (4.2), and denoting

the velocities of the solid and the fluid by v, V,

P,) 2 a. + -- + Dp(V-V) (4.6)

8x 2 x 2
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(a)

1() ~) ~-

t
ti

(b)

t
t1 (c)

I (t)= --L[H(t)-H(t-t )J+ (L-2)[H('t-2t )-H(t-

-t
t, 2tI

(d)

Figure 6:Velocity Excitations Applied at the Boundary
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P, v = c -- + b - - Dp(V-9) (4.7)

where

L(u(x,t),U(x,t)] =i(x,p),V(x,p)] (4.8)

indicates Laplace transformation, and p is the transform parameter. Assuming the solu-

tion to have the form

V = V exp( -yx) (4.9)

the characteristic equation is:

Vp(C O Y2 _ p2 ) (c 2  p 2) (c 2Y2_p 2 ) = 0 (4.10)

where:

2 a+b+2c0O  p
P

2C 2= 2+C2 C2 C2)2 +42 2]1/ 2
2 =2C+C -  1 2 12 C21

C 2 = c/pl

2 / 2)
21 c

=
() (2)

C is the wave velocity when the saturated medium acts as a single material and C.

are the wave velocities when no viscous coupling exists. (4.10) has four roots, viz,

2 (p) M2 - M2(p)]" 2  (4.12) 0
'/,2= Mi 1p 2 [4.12)

where

2M 1 (p) = (I/C 2 + 1/C )p 2 + Vp C2/(c C C)
2MI + -
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M2 (p) = p3 (p+y)
2 2C+C_

Thus, the general solution can be written as

V(x,p) - Al exp(--vx) + A 2 exp(--y2 x)

V(x,p) - B, exp(--yx) + B2 exp(--y 2 x) (4.13)

Here A,, A2, B, and B2 are functions of p and must be determined by the following

boundary conditions and compatibility equations.
A,+A 2 - (p)

B1 + B2 = (p)

[p 2 - + Dp/p(S)]A, = [C2 Y2 + Dp/p(']B, (4.14)

2 c,2 +Dp/p t)]A c2 'Y2 +D/p 1)

[p 2 - Ct, + I1 = [C 2 2 + Dp2]B 2

Hence,

At = (p)(1-S 2)/(S-sp

A2 = )(p) (S -1)/(SI -S 2 )
(4.15)

B = St Al

B2 =S 2 A2

where

S, = (p 2 _C2,2 + Q)/(C 2  +
1 1 121+Q

S2 - (p 2 -Ct 2 + Q)/(C2 2  + Q)

Q Dp .
(1)pcl

A general solution based on inverse transformation of (4.13) is not available. Two spe-

cial cases were solved by Garg [501 For relatively small value of D, CGarg approximated
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the solutions of the characteristic equation (4.10) to the first order in D to get
2= 1 p2 _1[(+l)
2 - (p + 27 1 p) -I +[(P+ -1 ) 2  n2] (4.16)

2 1 2 n21 (4.17)
= (p-+27 2 P) _ [(P+71 2

where

= + +(c -c )/c -c2) (4.18)

712 = 2C- C)I(C+ -( 2 ) (4.19)

As D approaches zero, 7h, 72 vanish, and the expressions for amplitudes in (4.15)

reduce to;

Al A* (p)

A2  A; (p) (4.20)

B1 =B 1  (p)

B 2 - B;2(p)

where

A; = (;-c+C 2 )/(C-C
B (CI _C2 +C2)/(C2+ C2)

B + 1 2- +

A; = -A, B2 =1- B
IiI

Garg termed this special case "weak" coupling. In evaluating A, BI, he set D =0, i.e.,

no coupling to get y1 = p/C+ and -y2 = p/C_. This assumption to avoid dependence of

the amplitudes on the transform parameter p made inversion of the solution possible,

but is inconsistent with the approximation to get equations (4.15) and (4.16). Substitut-

ing these results into (4.13), the transformed solution for weak coupling was written

0 as;
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( (p) exp[-(x/C+) F] + .2} (p) exp- (x/C_)F 2 ] (4.21)

where

FI I

F2 = [(P+712 2

Inversion of (4.21) gave

l (x G [xp(-7It) 8(t-) + 7), X exp(- t) f (t)H(t- C+)C*+(t)

+ exp(-7 2t) 8(t- -L-) + _ eX 7p( - t) f (t) H(t - (--)]* (t) (4.22)
B2J Q C_. C...

where

7( t2x 2C2 ) /

1 Ct2 _X2 /C2 )1/2

t) fi -2(tx/C) / 2]

2 (t) t2 _ xlC2 )1/2

Here, H(t) is the Heaviside step function, 8(t) is the Dirac delta and I, is the modified

Bessel function of first kind of order one. The symbol * denotes convolution product.

In evaluating the amplitudes no viscous coupling was assumed while effect of viscous

coupling approximated to the first order was retained in the exponentially decaying

terms If, for consistency, we set D=0 in the exponential decay terms, the trans-

formed solution (4.21) would reduce to:

{(P) 1 - ;(p) exp[-(x p/C+)] +AJ (p) exp[-(x p/C)] (423)
( -) I B; IB(-zpC J fA•

The inverse is:

.'(.j=j1 8 (t /C4 )* Wt + 28(t-z/C )*(t) (4.24)u(x, B2-
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This is the solution for no viscous coupling in which the solid and the fluid particles

move independently.

As D goes to infinity, the characteristic equation (4.10) yields a single root

= .. (4.25)CO

which corresponds to wave propagation with speed C Le., the mixture moves as a sin-

gle material For moderately large value of D, le, "strong" coupling, Garg [50] wrote

the first order approximation of the characteristic root in l/D as:

-Y L...... (4.26)
C0 1+9p

where

10 = . 2(C IC'-1](C2 /Co-1] (4.27)

The expression for 0 given in [50] is in error. (4.27) is the corrected form given by

Garg [51] (4.26) describes the motion of the mixture in which V and V are different

in order 1/D. Hence, Garg [50] assumed:

= V (4.28)

Based on this approximation, the transformed solution was obtained, using equations

(4-26) and (4.28) as:

p (p) (p) (4.29)

or, equivalently:

(p) = (p) exp[-!C ] exp[ -] (4.30)
C 0  CO  

2(p+ 1/G)

The inverse is:

u(xt) =exp[- (t)

{ [(/ - ] + 8(t)) exp[-.] (4.31)
o~t ' CO

II

S
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4.M. Integration of Gargis Solution

Gargs solution (4.24), for "weak coupling", was integrated to obtain explicit solu-

tons for four different velocity boundary conditions shown in Figure 6. These solu-

tions are listed below. Details are given in item 1.14. of Appendix B.

a). Unit Box Function

The applied velocity boundary condition at x = 0 is

0(t) = H(t) - H(t-t 1 ) (4.32)

where t, is the time at which the excitation is reduced to zero Substitution into

(4.21) gives

A 1~ ( x + f exp- 7r ,7 f () dr }

BIC+ +

X H(t- x )H(t-t .)(3)C+IC+

W(t = sin (wv t) (4.34)

where (a is the frequency, the corresponding solution is given by

A i n t 1-L exp [-- -- + -( X sin wt f ( ) cos t dr

Cos (at Jf I (r) sin cat dJ H H(t -x/C,)
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2 f~ 22 + 12[ XSin(atf()csdl+[BzJ(sin &At- .xp- -I x-") +  2 x [in~ f (-T) coswt dr"

JB2 - C- - 2T

S(cos C f f2 (r) sin (at dr] } H (t- x/C) (4.35)

c). Ramp Function

Velocity function specified as acting on the boundary is

W(t) = -L [H(t) - H(t-tl)] + H(t-t 1 ) (4.36)tI

The solution for this case is:

xti C C
+ a X f (-r) exp[-)1,r d"H(t -t x/C+)

C ( t+ 'x

+ -tt I- - ) exp[- - ]

LZ tI C+ C+

t
+ 2 -1X- fI(r) exp- 7r'] di] H(t-t,-x/C9 )

C- t -

+ •t tr +,C 2-

+ .12X t,~ (1 ~ir exp[-, -n di H (t - t - /C 1 (4.37)
Ic I
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d). Spike Function

The excitation in this case may be expressed as

,OW = -L [H(t) - H(t-t] + ( -2) [H(t-2t) - H(t-t)] (4.38)
ti tl

The solution for velocity is

f= A -f {L(t- ._) exp[- ] + !tT f ") exp -I I ] dri
IU I ~ C+ C+ C+ C i

x [H(t-x/C.)- H(t-t,-x/C.)] + [--(t--+-2t)exp[- 2-- ]

tti

+ i-x f f1 (,r) (t-T) 2) exp_[(- r] di]C+ xTC+ I ti

x [H(t-2t -x/C+) - H(t-t i -x/C+)] }

B . _ (t eXp 2( exp[- 2 I dr]

X [H(t-x/C ) - H(t-t -x/C )] "[ t- 2 72x

+ -2 X t- (tt ) 'p -)
ti C

+ 2 f(r) 1 2) exp[- 12 ] di 0

x [H(t-2t - x/C_) - H(t-t -/ CI)] 1 (4.39)

4.24 Evaluation of Garg's Approximations

To obtain exact inverses to the "weak" and the "strong" coupling problems. Garg

(501 made some amumptions. Primarily these amounted tto neglecting the Laplace trans-

form parameter p in comparison with D or its reciprocal depending upon whether D

took on very large (strong coupling) or very small (weak coupling) values. The reason-

ablenes of these assumptions was examined. As the range of values of the trans-
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formed parameter p extends over the entire positive interval, it would appear improper

to compare the parameter D, or its inverse, with p in terms of order of magnitude.

However, if C -=-C-C., the solution given by (4.31) for strong coupling is correct.

But, for that case, 0-0 and the solution reduces to the one for the case D- co. This

special case requires that the quantity

(C' - C2-)' + 4C 2'C',

should vanish, i.e. C 2C2 and C,2--C2 =0. This in turn requires a/p(t= b/p and

c = 0, i.e. the only coupling in (4.6) and (4.7) is through the viscous coupling. Vanish-

ing of c implies that the constitutive relations for the fluid and solid partial stresses

are uncoupled.

For the case of weak coupling too, Garg used a linear approximation in D for

roots of the characteristic equation; but for determination of the amplitudes, D was set

equal to zero. If the same linearization is used for the amplitudes as well, the solution

would be

A, -; (p)J,/F, A 2 = pJ/

(4.40)

B, = ;(p)L,/F, B2 = (p)L/F

where

2 2

it (C 1AI + D/p(,')) - (P +V)Q1 - C1 C 2  D

C2 + C2 2
1 (CI A.-+ D/p,01) -P (+V) Q I C2 D/0

2 +C21 p+(p+')Q A+ (I c +(C2+C 2

2 2
1401

L2 p+ (P +V)Q2 +( 2 2,212) D/P 10 - (C2+C2)AC.
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[C2 =C+CI2 D/po)R + C2R2  (441)

R = (C2-C /(C2C2)

R =[C,2(C+C 2)-_2C 2 ], (C2&cc)

1.2 2

1: - , 2 +C 2°c'c-

c2 C 2

The amplitudes are dependent on p in a complicated fashion and an analytical inverse

is not available Of course, for v- 0 the expressions are identical to tho in [501 To

examine the applicability of Garg's olution, the amplitudes for two materials, iz. the

one used in [50] and a coarse sand with mechanical properties listed in Table I were

evaluated. In the table. K. KI, K, are, rwpectively, the bulk moduli of the porous aol-

id, the nonporous solid and the fluid. as' is the shear modulus of the nonporous mlid.

(4.40) gave for Garg's material

= -(02238 p + 101.45)

= -(O.O044p + 1.455)

L. M -(0.1054p + 65.01)

L 2 - (0.113 9 p + 34.9 8)

F - (0.8906 p + 5757.4)

and for coarse sand
4 S0

]1 M -(54.966p + 148004.4)

2 = -(0283 p + 752.9)

L - -(1.4065 p + 7386.2)
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L2 (53.276 p + 1398656)

F - (1897 p + 57574)

The above pmms how that th contributon the terms containin p is neg1u-

hle in comp o wnuh consant terms un p u.a on extrmely large valuaL.

We note further that for boh th marials, the cotrbiot J. f the .eond wave in

the md to the laow rin is elaUvuly -aI. Fr the coa nd the contribution

t, of the rim wave in the fluid as ai rulatively emai.

Oarga aproiiaw solution wa huly dihsnguisaile from tb numer.al invers

of the exacUt trn ormed solution. It seems appropnate to conclude that Garg's approzi-

maw, mlutun for wuk coupling is wcepable for a abort time range after sudden

application of uniform velocty at the and of the column. For the case of strng

coupling. it appears reaable to mt

- -L- (I - 3) (442)
Co

for sufficiuutly large valum of D. (442) can be rewmttm as

f - p (8-28) (443)

and rsult in

2-y-p' - 1)+ ! 8 8)(4.44)
C2  C-1

C,, - P" a ( 2 I) + C!2 -2) (4.45)
C-2 (-2 -2

Substituting than relations into (4.10).

3 = 4 p , - C C2 C 2  C C I + 0(82)

-2vp =p 1 I(-(-1)- 8)]+ - -1)+ 8t -) (4.46)
C2 C2C20C 2 2 2

0 0
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where (53) oepr.ena terms of second order in 8. Thus. a first order approximation to

Bis

-C2. (4.47)

where

and

For the abmv reualt to match Garg's (501 it a OSO rUY to Anume r-. ie., to neg-

Is"t the terms which aun p. (441) gave

0 - 131.6x10' + 0.379785p

and for a Uwne sand

* n 28&41x1' 6 + 1.194347 p

Ourts lnennztim of & and the further approximation to obta an analytical solutaoo

were see to yield rmuts of acceptable acuracy a&d form a proper basis for develop-

ments of soluuonu for other boundary owdftaons.

&M.. Wave Propagation in a Flul4-Sturated Soil Layer

During the prnt remwrc. the concepts derie above were extended to a

finite sil column (elastic soil layer) and to independently specified boundary conditions

for the two constituents. 1-he solution prmconsisted of constructing singular fields

which incorporate all discontinuities of the velocity fields and their first and secod

derivatives. This additive decomposition left twice continuosly differentiable fields

which satisfy coupled hyperbolic second order differential equations with continuous

forcing terms. The results of the analysis were compared with numerical inversion of
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the Laplace transform solutions and also with numericaJ solutions obtaied by using

the finite elemmnt method. Details of this resarch ane documented in items 1.15 and

2.8 in Appendix B

4.3 S4-DICUZT SOLUT!OI

In order to separate the errmr ostibuin of the spatial anid the temporal approx-

umatimn. an eigmuf unction approch to solutbos of spsaLly disrewund equations of

moio was develoe. This ex pcted to pwvide a tichinak for evaluatio of

fuly diecratiizd am doain solution prcaum The swids showed the presece of a

high freueuncy spirAous onillatory compenent related to the qail mh amn With

rofunment of the weak, the lowes ageiivalue of the L.aplace transform solution were

found to cotverge. A Ritz vector type appoah in which the bae veeror are related

to the excitatioc could possbly improve the acracy of the solution.

The prooedure employed coninsted of a fitnite element dieereuntion of the coupled

squation (if macion to get the matrx ""Uton

o j K I0

Here u. w ame the sad displacmt and the displacement of the fluid relative to the

sod respectively. C. repy.ats solid damping. K. K and C am~ espec vely, the mawn

staff ne and damping with the subsripts in, ff and of indicating the respective solid,

fluid and coupling components. The solid damping was introduced by Ghabouei [53)

as a hinw combination of the stiff nes and mias matricin (RAyleigh damping), in the

following form;

C" a 1(M, - f 'M)+ &(K. -~ a , (4.50)

where a,, a, are constants. (4.49) can be expe compactly as:
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[M(U) + [C](U) + [K]{U) = {R) (4.51)

Where

(U)-fj

and (MI (Cl K] a retvey. the system maf, da ping and suffnm matncm

Droppng the square brodcka for cmvenmnce, th equation after Laplace transorma-

uon beconw.

(. + sC + K)q F (4.52)

whre

(4.53)

F -F () =+ U + %Wo + O+CO
(5

and Us. es an the u,tial ax tx s for nodal pont displement and veloiti.

(4.52) is a system o quadrauc eiuatkioa To homn the sytem, let

q (4.54)

Premuluplying by M. and nmrrangM

Mq - SMq - 0 (4.55)

Hence (4.52) can be wntten a

-(K + sC)q - M = -F (4.56)

Combining (4.55) and (4.56)

or,.

(o- 4 -
(4.58)

where:
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rum-KI B-

(4.38) is a system of linear equations. A and B are symmetnc matrices The pre-

scribed botumdary cmffit on displacments. veloctim e. wr enfort foUowing

Wilao's method To obtain a solution to itm equatiom the vector 4 was expromed

as a liner cmbinatim of a art of ndempendent vec ms Q, n - 1.2...m in the foUow-

ing form

4 = a .Q = [- Q(a) (4.59)
&.I

where a. are c errfiku and Q. is the nA column of the maai [Qj The eigeovec-

tor, of the probLem

(A -. Bly - 0 .nin..- m (4.60)

wr taken to be the idepmmdent vectom. Tu eilgenvalum were determined a the

roots of wth ly mcaW euato

IA - &M - 0 (4.61)

(4.58) and (4-59) give

(A -B) = -? (4.62)

Premnultiplying both Wes by QT

A a- saBa - -QP (4.63)

where A -Q TAQ and B'- QTBQ an diag matm due to orthogonality of Q with

respect to A and B The nth equation is

A a, -a.8 an (4.64)

where

"1
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A: Q7.AQ2 -o a BQ, an so Bo (4.65)

Subttuwtion of (4.65) into (4.64) gave

§Xia. - Ba.uQ (4.66)

Hence

Substito of (4.67) in (4.59) gave the solution in the LApLace transform spee

4 QT . (4)

This sarms was inverted. term by term to get the requijvd result in the form of

nodal dixplacmets and velocitme as fuwuoc of time. Thin functioa were evaluat-

ed for specified values of the time variable to determine the solutions a well as sec-

ondary quantities of inten eg. the mm in the matenal.

Item 1.8 and 4.2 in Appendiz B conuun details of the procedures as well as

examples for validation of the coputer codes.

4.4 FDCITE ELEMENT SOLUTIONS

4.4. Vauiatioal Formlation

Variational formulations of the Lunzed vernon of the theory and its extension

to include material nonlinearity were developed to onastruct a bass for alternate finite

element approsacbes to the problem. Ghabous [531 had developed a variational formula-

tion of Biot's theory but for the purpose of finite element analysis he used the Galer-

kin procedure. Also this variational formulation did not allow for the boundary on-

a ditions properly nor did it allow for interelement discontiuities inherent in finite
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element methods

In order to syutanmtcaIly develop variatimal principli, the equations of motio

wer written in a form that they would cowutitute a stef-adjint system in an appro-

priate liner vecmr spc. This procedure wa tond on prevus work by Gurtin

[71,72, Mikhlcin [98) and Sandhu and his co-workem [133-1381 "The self-adAnt system

of equao for the problem --

A(u) - f on Rx(0.o) (4.69)

Here A a a miatnz of opm'aton. Expbcntly

p 0 -L 0 0
0p( 2/f+l(1/k) -t--L 0 0 0

am

A= tI- -. 0 0 0 -t (4.70)am
L 0 0 0 -to 0

0 0 -to p teadm83

P 0 -t 0 teaM 8  tem

when

L = .1t-(8,. - + 8 .A (4.71)

2 li k ks al

and

p - t-(E + a. ,a) (4.72)

Alm m (4.69).

us 
FS

w 0
U- and f 0 (4.73)

ij 0
e Ck) 0

es 0
o
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Elemnts of the operator matrix A satiafy self -ad jointnes with raspect to the bilnear

mapping

<g' - *~g dR (4.74)

L.. -bey sty the relation

-:UI ~ ' - £Alpu~a + D,,(u..u?) 1 -. 2 ... (4.75)

whmr Dt(u,. u) denote quanttie assciated with the boundary 8R of the region of

interest 1. Consisent bound~ary conditions for (4.69) are

-toun1  -toUln j on S IX [O.a~

-tw~~ -- t In, on S2 x(*o

toVi to on S) X[O. Oo) (4.76)

tgrj, t" T., on S, x(0. cc)

Consistent form of the internal jump diseontinuitmies &

eWi/- -t(&1 )Inj on S" 1[ O)

-to(w'Y -tog 2 on SA X 0. 00)

e~n g~n, on S 3 1 X [0' 00) (4.77)

to( 1 - t* dni on SM X 1O.a

Boundary operaoi Ci. i.j -1.2,..n are maid to be consistent with the matrix of

field operaor if in (4.75)

D (ui 0U?) - <u"iC u >~ - L jC U> (4.78)

Here surfaces Sj,, Sa. S, and S, are embedded in the interior of R Operators in the

self-adjoint operator matrix in (4.70) have the folowing relationships

Tui$ <t*u ,i.>tj4~ ij 4 i JJR

0,
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+ ~+ 4Ui ,jfl>S.

++<to + <tau, (4.79)

+lws 40W -->S +~5 , .& , w ,-

+ clV (witt)', srs2 + <ctow$ 0 (VnY' 13 (4.80)

Heme we assume that < . N In the sum of quanutlm evaluated over the subregions of

R suchi that all the surface S. S2. 5. %, are contained in the unio of the bound-

arma of theme subregions. For the coupled sysumi (4.69) the governing function is

defined ax

110(u) < .uu 3 + 24p'w 1 ,u , > <tar 4., u, + 4f+I' 2)f k

4 * V 0 w > 4 w .1' W > R < t ef .V )3  + < t u j 7T~

+ 4(EJ + *4M8'&,) C11 eij~t

+ 24a~cM 8 jei. -f + claMj. e~ - 2<u1 ,. F,>, - 2<w, ,>

- TI t4(u - 2u) ne < w, t@(w, - 2w) n,,,

-cr, . to((uinpj- 2(g )in? >s Ii- <w. to((w~n) - 2g92 )

+ <wS, t((rnY- 2g93nd >SM + <ui . t*(r,n/Y- 294n"d 'S41 (4.81)

The Gateaux differential of this function along v -iii, ;W,. 1P. t?,e 7 is;

14 '&V j0(U) =ii P~ 2W _tT- - 2Fi>R

f k

, 

0
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+ <W,. ('ai +(f+ I* +u--, >

* <:i. t,. -J_ tJ> R + <V. tw,.1- to?>.

* < fj . j- , + >, a + o < 7a ), +j -"u s.j " i > ,

* < i. -t4I, + KE~ju + O'W',,ad ew + a M8,A >,

* < 0 k. t + + t" O a 2?AS.,e,, + j > a

+ <,.-te-w + + te a Maui 8 + "4>e.it

- < Fj .unj- +>sI - <+ f, > S

- < , Twtin - 2;vlnl)>s2 -< T teeing>S2

- <Wt(wn -2n)>., - <w,t'n>s3

-< i. tI(,jn- 2,)>s, - <u t. rpn>s,

-< f , .to((Un" - 2(&,),n? > sit - < ri. teu, ;' > ,

-<,t((wlnY- 2g )> s - <r,t(-. nd'> s

- < t((rn)' -2g 3n)> s - <wi,tKi5n)' > s3

< U!, tK(lr|pm? ' - 2(gall?> $41 - <u, tKTi > sdt (4.82)

Using (4.79) and (4.80) the Gateaux differential is seen to vanish if and only if all

the field equations along with the boundary conditions and the jump discontinuities are

stisfied. (4.79) and (4.80) relate pairs of operators in the operator matrix A and may

be used to eliminate either of the elements in each pair from the function f(u) in

(4.81). Eight alternate forms can be obtained by using either or both relations. limina-

tion of an operator Aj from the function implies that state variable u, need not be in

the domain M of Ar This results in relaxating the requirement of smoothness of u,

0I

S
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thereby extending the space of admissible states. In the context of the finte element

method, it is c that the extension of the admisible space provides greater freedom

in selction of appmximation functions.

If the admisible state is constrained to satisfy some field equation and/or bound-

ry conditios. certain specilied forms of the variationa principle are realized. This

procedure a used to reduce the number of free variable in the goverming function.

Alsm certain asumpdow in the spatial or temporal variation of some of the variables

lead to approximate theories. In the context of direct methods of approximauon the

constarints ammed in the specialization must be satisfied by admissible states.

As an example, for the extended functional obtained by using (4.79) and (4.80) to

elimiate r,. , and w.1 from (4.81), specialization to atisfy (4.69)3 and (4.69), , satis-

fying identiclly the kinematic relationships gives

01 = <pu1 ,u1 >1 + 2<p(2)W1 ,u>it + <(4 + 1)wI w>I >
f k I

+ R+ +2<t'fM8ij.j>

+ <t-Me,e>t - 2<u,Fi>1 - 2<wi.Gi>,

- '2 <,r,, '(u i - adnj > s 2 < , t*(w - ,)n, > S2

-2<wqt4 I>$3 - 2<u tti>S,

-2 <r , t((un?) - (g1 )n? >s - 2 < w, t((wn)' - g)> s20

-2<wit*g3ni>s3 i -2 <uit*g4n1 >s, (4.83)

If the field variables over the domain are continuous, the jump discontinuity terms

drop out giving the specialization;

n 2 = <pui,u>,t + 2<p 2)w,,ui> R + <( -+ 1*l)Wi, w >
f k j' >

+ <t4 Eijkl + a 2M~ij~k)ekJ, eij> Ri + 2 < t~ota i M teij, > RI
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+ <tMj, >% - 2<u,F,>jj - 2<w,,G,>R

-2<w.4M>S3 - 2<u,,t't>s, (4.84)

Further spealization of (4-4) to the cae wher displacement boundary conditions are

identically mtified yields the function governing the two field formulation proposed

by Ghaboussi (53] except that in the pneet formulation the boundary terms are con-

insent.

Figure 7 diagramatlcally depicts the pclible extensions of the general variational

principle baed on the drect formulation. Figure 8 shows the same for the comple-

mentary formulation In either case, only the seilization listed in the report (item

1.7 in Appendix B) are shown. Evidently, other extended forms could be used as start-

ing points for specialization

Details of this effort are contained in items 1.7 and 3.2 in Appendix BL For non-

linear problems, a quasilinearized form of the nonlinear equations was used to develop

a variational formulation (item 1.13 in Appendix B).

4.A.2 Two- and Three-Field Formulations

In the two-field formulations of Biot's theory the soil displacement and the do-

placement of fluid relative to the soil were used as the two field variables. The pore

pressures were determined through a constitutive relationship using volumetric strain of

the soil and the change in fluid content. During the course of the present research, it

was felt that this approach may not yield sufficiently accurate estimates of the pore

pressures because of the need for numerical evaluation of the derivatives. A three-field

formulation introducing the pore-pressure as the third field variable was derived as a

specialization from the general variational principle. Asmuming the boundary conditions
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Figure 8:Family of Complementary Variational Principles
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on S1 and S3 are identically satisfied, the governing function for this was:

fl = pu1,u 1> 1 + 2< 2 )w1 ,u> 1 + +<(P(2) /f +1*L)w,w>

- 2 <. At' i > R '+ <tOEijk.ekJeij> + 2 < tseifj, + i I

! -<t*. ,ir> - 2<uiF> 1 - 2 <wiGt>1

+ 2<r,' s - 2<u ,t*T>s (4.85)

This formulation was implemented in a finite element computer code to obtain continu-

ous pore pressure distributions. The three-field formulation also allowed direct specifica-

tion of the fluid pressures on the boundaries, which is not possible with the two-field

formulations, where this boundary condition could only be applied as a linear con-

straint in terms of soil displacement and relative fluid displacement. The studies

showed that though the numerical difference in the results from the two- and three-

field formulations was only slight, the three-field formulation was much more expen-

sive. However, it has the distinct advantage of being able to prescribe boundary values

for pore presssures. Items 1.10, 3.4 and 4.1 of Appendix B contain details of the for-

mulation and a study of its effectiveness.

4.4.3 Spatial Discretization

Most succesful schemes for approximate solution of the coupled problem of quasi-

static soil deformation and fluid fow have been based on the use of higher order

interpolation for the displacements and a lower order for the pore water pressures.

These elements are expensive to use in terms of computer time. Elements based on the

4 use of the same order of interpolation had been found to give unreliable results just 0

after loading and would be suspect for use in dynamic problems. Incompatible interele-

ment boundaries have been used to combine the economy of lower order elements and

4e
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yet retain higher order local interpolation. These elements satisfy the patch test for

completeness for certain element geometries. Ghaboussi's four point incompatible element

[52,53] was implemented in a computer program for consolidation analysis to compare

its performance with that of higher order elements for efficiency and accuracy. Details

of this study are contained in item 1.3 of appendix B. These studies were useful in

the selection of the strategy appropriate to the problem of dynamic analysis of liquid-

filled soils. The comparative study showed that the incompatible element gave results

almost identical to those obtained using the higher order elements based on biquadratic

interpolation for displacements, but was significantly more economical. This made Gha-

boussi's element a good candidate for extension to nonlinear, three-dimensional and

dynamic problems.

Three different finite element strategies were used to cover the cases of one- and

two-dimensional wave propagation. Both bilinear and biquadratic interpolation schemes

were implemented along with Ghaboussis incompatible element and cubic Hermite poly-

nomials for one-dimensional wave propagation. These interpolation schemes were imple-

mented in a dynamic analysis computer program and used to solve one-dimensional

wave propagation problems for which exact solutions were available. The code was

used to solve one-dimensional wave propagation in a single material Both the steady

state and the transient cases were considered. Garg's [50] theoretical solutions for the

case of weak as well as strong couplings were used as benchmarks. Application of

the computer code to all these problems showed excellent agreement between the

numerical and the theoretical solutions. The code could not be tested for two-

dimensional wave propagation because of lack of exact solutions for that case. Reports

listed as items 1.3, 1.15 and 2.3 of Appendix B describe some of this work.

01

0.
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4.4.4 Singularity mements

Conventional finite element procedures cannot adequately model pore pressures

near loaded free-draining boundaries because of the singularity in the pore pressure that

exists immediately after the load is applied. Special finite elements, developed by Lee

[891 to allow for line singularities were used to simulate propagation of waves in sat-

urated soil. These elements use interpolating functions of the type

1 - ax - (1 -a)?x

where the index n is sufficiently large and coefficient a is chosen to be

a = 1-exp(-mt)

and were found to be satisfactory for proper representation of singularity at the wave

front. These elements have the property that for t = 0, a =0 and, therefore, the interpo-

lating function is 1-xn and as t increases the function approaches 1- x. This element

reproduces the line singularity occuring in one-dimensional consolidation problem imme-

diately after loading and the singularity at a wave front. The interpolating scheme

would approach 1- x as time t increase This research is described in items 1.1 and -

3.1 in Appendix B.

4.4.5 Time Domain Integration

The results for one-dimensional analysis, for which exact solutions are available,

showed that the conventional time-domain integration procedures found to be quite

effective for single material problems, were also acceptable for the coupled problem of

dynamics of saturated soils. A popular scheme is Wilson's P, y, 0 single step method.

For two-dimensional cases, no exact solutions are available. For this reason, all the code

verification had to be done on one-dimensional wave propagation problems. The

requirements for an acceptable time step integration scheme were that the results

should be insensitive to the choice of time-domain integration selected by the user and

that with reduction of the size of the time step the approximate solution should con-
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Verge.

A modification to Wilson's method was introduiced ira order to specify velocity

boundary coniditions. Finite element discretization. of the spatial domain leads to.

MU + COU+KU = R (4.86)

where K K and C are the mau, stiffness and damping matrices, respectively, and R is

the load vector at time t, In (4.86), the square brackets and curly braces have been

dropped for convenience, as in (4.52). In Wilson's scheme the displacements and veloci-

ties at time (t + GAO are expressed in terms of U, U and U at time t. as

= + AU + (1/2 - )(O) 2 .+ PGt) 2u~ (4.87)

Uzi+O = U + (I -Y) (OU n+8 (4.88)

in which A and vy are Newmark's coefficients. Substituting (4.87) and (4.88) in-to

(4.86) yields

KU R (4.89)

where

K K + M + C
pgAt 2  tO:

R(.:2 R + Nk) Cb 0  (4.90)

ar4= U0+ (moAon + (1/2 - ne~)2

b00= U n + (I - )(A) 2 J)

Asumning cubic variation of nodal point displacement over the time step (t , )in

4 terms of displacement, velocity and acceleration at time t., the values of these quanti-

ties at time (t. + At) are

u~ =-Lu + Ii.1u + j11 _)AtU. + L )(&)
11+1 93 & 93 92 0 0
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(U~s f I~2f - ~ )+. (4.91)

,= - (-u )+ 1 + (

n+1 T9 3 8t 2  00 n 2at 0

In a given problem, when velocities are prescribed at certain points, the corre-

sponding accelerations and displacements are also known. In developing the modified

scheme, all features of Wilson's method were sought to be retained. This enabled appli-

cation of the scheme directly without elimination of known degrees-of-freedom which

is quite cumbersome in dynamic problems. Let subscripts a, b denote the unknown and

specified quantities, respectively. Then for the stage (n + 0) at time t. + OAt, (4.86) can

be rewritten in partitioned form as

F + Cb+ (RI
aba _(4.92)

M: bjI"~b (+0 Cbj" W ( Kb. Kbb jlbJ'. IRbi(.

Rearrangement of terms in (4.92) gives

[K3(M -
=cj'I 

j 
[MrC44(4.93)

n-e) i (+O)) (n ) ( )

From (4.87)
_ 1

(0At)2 [un - un - OAt u - (1/2 - ) (oAt)) a] (4.94)

Substituting (4.94) in (4.88)

n  = (u,, - u, - Oat (I - A/ - (1/2 - /v) (OAt) 2 ] (4.9)

Rewriting (4.94) and (4.95) for the unknown quantities u, and u,

-1.-- (gAt .- (1/2 -)(Oat)2aI (4.96)

(n"4) 0(n) n tin

(1/2- Pl) (Ot)' -I] 4.97
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Subtituting (4.96) and (4.97) into (4.93) gives

fRl (4.98)

where

+.=X.+C (4.99)

Kab= ab+~Mb+(4.100)Ka;b = Y.b + t M b + A-C

(et) = t b + .-cb. (4.101)

=K M b + M bb (4.102)

R CM , 1~ +PI "(~ 12-(~)
+ [c] J+ (eAt) ( - pk , + (1/2 - P/),) (0,&t) 2

NIP I4 - ICfPI (4.103)

Wilson's method of allowing for prescribed displacement boundary condition was used

to rewrite (4.98) as

where

R =R-Ka (4.105)
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and a, are the prescribed values of Ub I denotes the identity matrix. The first set of

equations in (4.104) is the first set of (4.98) modified for the known ub and the sec-

ond set of equations are trivial equations introduced to avoid reordering of elements of

the displacement vector.

The procedure discussed above was used to solve the problem of wave propaga-

tion in a finite soil column of length (L = 50cm.) shown in Figure 9. The excitation

was applied at the top (x =0). The base of the soil column was assumed to be rigid

and impervious. The material properties were chosen to be the same as used by Garg

[501L ie.,

n( = 0.82, n12 = 0.18, p(i) 2.1812 g/cm, p = 0.1S g/cm3

KI = 0.36 X 1012, K=0.118x 1012, K2=0.22X10", G=0.99x101 1  (all in dynes/CM 2)

These are related to Biots constants and yield

E = 0.2321 x 1012 dynes/cm2, P = 0.171, a = 0.6722, M = 0.1047 X 1012 dynes/cm'

Two example problems with different boundary conditions, Figure 10, one following

Garg (50] and the other suggested by Morland (item 1.15. in Appendix B) were solved

using the numerical inversion of the Laplace transform solution and the direct finite

element procedure. Mathematically, the boundary conditions are:

Example I:

v 1(0,t) - H(t)

(4.106)

v 2)(0, t)- H(t)

where H t) is the Heaviside function. Corresponding velocity transformations are

v" ( o , p) / p
(4.107)

v 2)(o,p) = /p

01
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x=O

x

Soil Column

No Lateral Displacement

x=50 cm

Rigid Impervious Base

Figure 9:Representative Soil Column
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Example 2:

vet)o,t) = H(t)

(4.108)

V(2 ko, t) = [1 -0.2 e- t/ T] H(t)

t =L/CO) = 140.9 Aec was taken as a normalizing factor. In this example, the fluid

velocity specified at the boundary was different from the specified solid velocity and

increased gradually from a value of 0.8 at t 0 to unity over the time scale. The

velocity transformations are given by

V(i(p) = i/p

(4.109)

V2)op) = i/p- 0.2/(p + 1)

Two values of the drag parameter.

D = 0.219 x 102  g/cm3-sec

D = 0.219 x 101 g/cm3.-sec

representing the so-called low drag (free relative motion between constituents) and high

drag (negligible relative motion) were used. The corresponding values for the ratio

K/I/ used in the finite element analysis were 0.148 x 102 and 0.148 X 10, respectively.

Numerical inversion of the Laplace transform solution to the problem was carried

out using 5000 terms in Dubner's [41] formula

f(t) = (l/)e' Y  Reff(r + klri/2r)cos(kwt/2i)] 04t 4r (4.110)
k-O

where prime signifies that only half of k =0 term is included in the sum. Dubner

[41] showed that the error could be made small for 0-t-<, by choosing rr sufficient-

ly large, where r is a real number. The value of rr was set equal to 5.017. The

velocity histories at four locations, namely 10 cm and 30 cm from the free surface,

0
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were recorded over a total time period of 986. paec at intervals of 14 pwac. This

allowed for six reflections of the faster C, wave and two reflections of the slower C_

wave. The CPU time on the IBM 3081 mainframe was 70 min.

The finite element solution was a uniform spatial mesh for Example 1 but for

Example 2 modelled the boundary layer by a fine mesh of elements near the top sur-

face including a singularity element adjacent to the surface. Thus in Example 1 the

spatial discretization consisted of 100 linear elements and 986 time steps of size 1 Aec

in the time domain. In Example 2, 100 elements Of 0.005 cm length were employed

near the top surface and 100 elements of 0.495 cm for the remainder of the column.

The temporal integration involved 141 steps of 0.01 pe and 985 steps of 1 Imr-

The velocity histories for low drag and high drag for Example 1 are shown in

Figure 11 to Figure 14 and Figure 15 to Figure 18, respectively. For Example 2, Figure

19 to Figure 22 illustrate the low drag effects and Figure 23 to Figure 26 the high

drag. In both examples, excellent agreement of numerical results is seen. In example

2, a refined mesh consisting only of linear elements was not able to reproduce the

sharp wave fronts and large oscillations were encountered. This was overcome by the

use of singularity element near the top boundary. The shape functions for this element

were of the type (1- CO) and ' over (0,1). The index was taken to be 100.
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44. Nonlinear Problems

For nonlinear problems, an incremental approach was necessary. The equations

governing this cas along with a varational formulation of the problem were devel-

oped (item 1.13 of Appendix B) Only material nonlinearity was considered.

At any instant of time t, the equilibrium forces acting on the discretized system

can be represented by

.: zII + 0 rl j{j+ -=fj + r1(4.111)
Alternatively, one might write

FI(t) + FD(t) + F(i) + F(0 = p(t) (4.112)

where Fr F. are, respectively, the inertial and the damping force vector. F represents

the internal resisting force related to the solid deformation only and F is the internal

remsing force ariaing out of deformation of the fluid and coupling between the two

phases, P denotes the applied load vector. A short time At later, the equation would

be

F(t+ At) + F(t + At) + Fs(t+ At) + Fs(t +At) = P(t + At) (4.113)

Subtracting (4.112) from (4.113),

FI(t + At) - F(t) + FDt +At) - FD(t) + F*(t+ At) - F'(t)

+ F(t + At) - FS(t = A(t +At) - P(t) (4.114)

Noting

F(t+ At) = M(t + At)V(t +At), (4.115)

expanding M(t + At) and "i(t + At) in terms of Taylor's series, and retaining only the

first order terms in At gives

F,(t + At) = M(t)t(t) + M(t)A'(t) + AM(tO(t) (4.116)

Similarly, the quantities
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FD(t + At) = C(t + At) u(0

A(t t) = K*(t+ At)u(t+ &t) (4.117)

F*(t+ &t) - K"(t+At)u(t+At)

can be approximated as

FD(t + At) = C(t) (t) + C(t) A(t) + AC(t) i(t)

Fs(t + At) = K(t) u(t) + K*(t) Au(t) + AK*(t) u(t) (4.118)

F;(t + At) = K(t) u(t) + K(t) Au(t) + AK" u(t)

Use of (4.116) and (4.118) in (4.114) yields

M(t) A(t) + AM(t)(t) + at)AUt) + AC+t) (t) + K.(t)Au(t) + AK.(t)u(t)

+ K" Au(t) + AK" u(t) = P(t + At) - M(t)W (t) + Ct (t)

- K(t) u(t) + K(t)u(t) (4.119)

This represents a general form of incremental equations. If mass, damping and stiffness

quantities at time t are known, (4.119) can be solved for Au(t) by step-forward inte-

gration scheme, which also yields Au(t) and Xa(t). In doing so, the quantities them-

selves are dependent on the solution Au(t) and hence an iterative scheme to reduce the

cumulative error is necessary.

The theory was specialized to the case of nonlinearity only in the soil/stress rela-

tions. This case was implemented in two finite element programs. In the code NAOWP

(Nonlinear Analysis of Wave Propagation) elastic-perfectly plastic and bilinear stress-

strain relations were used. The other code named DANS (Dynamic Analysis of Nonli-

near Soils) incorporated a more general model of elastic-plastic work-hardening proposed

by Singh [1601 A modular structure was used so that a variety of models could be

selected. Local iteration was employed within each time step and convergence asmired

•I
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before going on to the next step. NAOWP was designed to model one-dimensional wave

propagation. Linear variation over the spatial elements was assumed. In DANS (item

1.19 of Appendix B), bilinear and biquadratic isoparametric elements were implemented

for two-dimensional wave propagation analyses. Since no exact solutions for nonlinear

wave propagation in fluid-saturated soils were available, the codes were verified against

exact solutions for single material wave propagation. Exact solutions for bilinear solids

subjcted to dynamic excitation have been developed by Belytachko [10] and for an

elastic-perfectly plastic solid by Wood [173 Figure 27 describes the discretization for

a soil column as well as the suddenly applied loading for the three cases tested. Figure

28 shows the stress history for case 3 plotted against the exact solution by Belytschko.

Figure 29 shows the stress pulse of short duration used by Wood [173] along with the

elastic-perfectly plastic soil column. Figure 30 to Figure 34 show the stress profiles at

time equal to 4, 8, 12, 16 and 20 plotted against the exact solution by Wood [173] for

different levels of mesh refinement. Item 1.13 of Appendix B contains details of the

approach as well as illustrative applications of the two computer programs to wave

propagation through a saturated soil layer.
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Section V

LABORATORY INVESTIGATIONS

5.1 INTRODUCTION

Historically, laboratory studies of material behavior of saturated sands under cycl-

ic stress conditions have played an important role in the determination of liquefaction

potential Numerous investigators have tried to model and predict the potential and

probability of liquefaction occurring in soils. Various test apparatus have been designed

or modified in an attempt to provide an accurate representation of the stress state gen-

erated rn-situ by ground motion. A number of experimental devices including the cyclic

triaxial, cyclic simple shear, torsional shear and shaking table have been developed. A

wide diversity of data have been generated with the use of a dynamic (or pseudo-

dynamic) excitation loading pattern. Detailed reviews of these experimental programs

and design methods based upon them, can be found in several state-of-the-art reports.

In particular, those by Seed (155-1581 Finn (441 Casagrande [31] and the National

Research Council [1091 should be noted.

The laboratory method used in this study to load the sand samples was a shak-

ing table. It is well known that the variety of small scale apparatus currently in use

in the laboratory introduce non-uniform stres and strain fields in the sample being

tested (eg. [31,127,94,174] ). Since the onset of liquefaction is clearly a local phenom-

4
enon, it is certain that a measure of the liquefaction resistance of a saturated sand

would be affected by these stress and strain concentrations. The result of stress concen-

tration induced liquefaction would be an underprediction of the true liquefaction resis-

- 145 -I.
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tance. Therefore, although the shaking table is not as widely used as the other labora-

tory devices identified above, because it does more closely simulate actual field condi-

tions, several previous investigators have used it as the basis for liquefaction studies.

Among the many reports available on experimental programs are several in which

shaking table tea were conducted specifically for the purpose of studying liquefaction

including the program of Finn [451 O-Han [1151 DeAlba [38]. Seed [1581 and Sasak

[1391.

In an experimental program performed on samples of saturated sand in 1971,

Finn [451 demonstrated the usefulnem of the shaking table for conducting liquefaction

studieL They observed that the shaking table offered several advantages over cyclic tri-

axial and simple shear devices. Chief among these advantages were: embedded instru-

mentation having a negligible effect on sample response can be used; the distribution of

pore pressures over time can be monitored; the uniform accelerations developed in the

plane strain specimens more closely corresponds to actual field conditions.

O-Hara [115] conducted shaking table test. on two different uniform sands. In

addition, he performed cyclic triaxial and cyclic simple shear tests on the same materi-

aL He observed that sand samples tested on his shaking table typically showed an

increased resistance to initial liquefaction when compared with the behavior of the

same materials when tested in either of the two small scale devices.

The shaking table tests reported by DeAlba [38] performed on specimens of Mon-

terey No. 0 sand. The samples were 4 inches high by 90 by 42 inches at the base

tapering to 74 by 30 inches at the top. This shape was chosen so that a rubber mem-

brane could easily be placed over the specimen and then pressurized to simulate a bur-

ied soil element. The size was chosen to provide free field conditions in the central

portion of the specimen. The membrane under which the sample was confined allowed
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the specimen to deform during the application of the cyclic load. Additional surcharge

was applied to the specimen in the form of a reaction man which was composed of

steel shot placed in a bag on the top surface of the sand sample. Pore pressures were

measured at several locations.

The results of further tests conducted on the Berkeley apparatus were presented

by Seed [158] in an experimental program designed to study the effects of seismic his-

tory on a sand deposit. In these tests, Seed et-aL observed a dramatic increase in the

number of cycles required to induce liquefaction in samples which previously had been

subjected to cyclic motions significant enough to raise the pore pressure but not enough

by themselves to cause liquefaction. Seed et-aL attribute the observed increase in cyclic

strength to grain rearrangement. They pointed out that there is substantial evidence

that these higher values of liquefaction resistance are more representative of the actual

performance of natural sand deposits which have been subjected to past cyclic motions.

Saskzi [139] conducted a series of shaking table tests on sand samples. The sample

size they chose was much larger than had been used in any previous programs (12

meters long by 3 meters high by 2 meters wide) and it is therefore more likely that

true free field conditions existed in their samples. The samples were formed by pluvia-

tion through air similar to the procedure employed by Seed [1581 Saturation was

reportedly accomplished by displacing the air through the infiltration of water from

the bottom of the sample. The sand surface was unconfined. Instrumentation consisted •

of embedded pressure transducers and accelerometers. Measurements of cyclically

induced increases in pore pressure were made at a total of 35 locations within the

sample in both the free field and in the vicinity of an embedded concrete box intend-

ed to simulate a roadway. It should be noted that the increased pore pressure was an

order of magnitude greater immediately beneath the roadway than it was in the free

am mmm lmm m ul mm ammtmm 11m m lrr . ...
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field. Clearly the rate of pore pressure increase during shaking is very sensitive to

the presence of local irregularities, in this case rigid inclusions.

In order to minimize these local effects on an experimentally obtained estimate of

liquefaction potential, the test apparatus described in the following sections was

employed. Herein we give a summary. Details are given in items 1.9, 2.6 and 4.3 of

Appendix BL

5.2 EXPERIMENTAL FACILITIES

5.2.1 Introduction

The facilities used in the laboratory investigation of the liquefaction phenomenon

were designed for the purpose of providing reproducible results in which the stress and

strain conditions at the sample boundaries were well understood and could be recon-

structed accurately in a numerical model They consisted of a unidirectional shaking

table to which was attached a test box with a capacity if approximately one cu. ft. of

soil. The instrumentation employed to monitor the sample behavior consisted of accel-

erometers and pressure transducers

5.2.2 Shaking table

A shaking table with a capacity of 2500 lbs. located in the Soil Dynamics labo-

ratory at the Ohio State University was designed for the liquefaction testing program.

Table motion was provided by an MTS system capable of producing peak accelerations

of approximately ± 2 g. These high acceleration levels were achieved when the origi-

nal 3 gpm pump was replaced by a 10 gpm pump purchased with contract funds. In

order to make best use of the increased capacity of the pump, the existing single 10

gpm servovalve was replaced by dual 10 gpm servovalves in conjunction with two

accumulators. The accumulators significantly improved the system performance during
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conditions of peak fluid flow. The input signal could be either periodic or an exter-

nally programmed random acceleration time history. A schematic diagram of the lique-

faction testing system is shown in Figure 35.

5.23 Text Box

The test chamber which was bolted to the shaking table was designed so that:

* The length to height ratio of the samples would be such that a free field plane
strain condition existed in a substantial portion of the specimen.

* Moveable inner walls which would provide the required lateral support to the
sample during construction, could be withdrawn at the start of the cyclic test so
t#at the sample could deform under plane strain conditions.

0 Normal stresses on the horizontal faces of the sample could be chosen indepen-
dently of the stresses on the top face, thereby allowing for tests to be construct-
ed on samples without requiring that K be - 1.

A diagram of the test chamber is shown in Figure 36.
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Figure 35: Large Scale Liquefaction Testing System
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5JA Rubber Membrane

The rubber membrane surrounding the sample was made to the exact dimensions

of the sample test chamber with the inner walls in their unretracted position. It was

constructed so that different horizontal and vertical pressures could be applied to the

sampl. The membrane had to be thin and flexible so that the confining pressures

would be trnsmitted uniformly, but strong enough to withstand the working pressures

used. A fiber reinforced (nylon on nitrile) synthetic rubber sheet with a thickness of

.025 cm met these requirements and was to make the membranes. The lower mem-

brane, to which the horizontal pressure was applied, was in the shape of a rectangular

box, supporting the bottom and four sides of the sample. The top membrane was a rec-

tangular sheet placed on top of the sample after construction. With the lid of the test

box in place, the top membrane acted as a gasket, sealing the confining fluid around

the sides from the fluid on the top of the specimen.

5.2.5 Instrumentation

Two types of instrumentation were employed in the laboratory investigation. Pore

water pressure measurements were made using transducers attached to hypodermic nee-

dles. This allowed for direct measurement of the pore water pressure within the interi-

or of the sample while causing minimal disturbance to the specimen. Small t 5 g

accelerometers were placed near the top of the sample and at the sample base to record

table (input) motion as well as the response at the top of the sample. A typical

instrumentation configuration is shown in Figure 37.

5.2.6 Test Material

Uniform Ottawa sand was used in all tests conducted during the experimental

program. The minimum and maximum densities were determined to be 14.03 KN/cc

and 15.99 KN/cc respectively. The grain size distribution for the test sand is shown in

Figure 38.

i~
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5.3 TESTING PROCEDURES

5.3.1 Sample saturation

It is important for the proper measure of pore-pressure rise as a function of

shaking that the sample be completely saturated. The procedure chosen for saturating

the test specimens was to boil the sample in deaired water under a vacuum for not

less than 30 minutes. Each sample was constructed in the test chamber by pluviation

through water. This method was chosen because it has been our experience that prepar-

ing specimens this way will consistently yield saturated, uniform samples at a desired

density. In order to increase the liquefaction potential, the samples tested in the OSU

studies were deposited in a loose state, with relative densities ranging from 23% to

54% To be sure full saturation was achieved, Skempton's pore water pressure parameter

(B ) was determined prior to testing. According to Black and Lee [221, values of B

equal to 1.0 signify full saturation of samples of low relative density. A value for B

greater than 0.95 signifies an acceptable degree of saturation for sand samples having

high degrees of relative density. Considering the relative densities used in this study,

a B value greater than or equal to 0.98 was considered indicative of full saturation.

5.3.2 Sample Confinement

Since the top of the specimen could be pressurized independently of the sides, any

ratio of vertical to horizontal stress could have been used. Two different different rat-

ios were tested. The response of samples consolidated under isotropic conditions were

the majority of the tests performed in order to make comparisons with other experi-

mental data practical. Several samples were liquefied after being consolidated anisotropi-

cally (K = 0.6).
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5.3.3 Input Motions

Two types of input motions were used in this study. The first, a harmonic input

of 10 Hz was chosen to allow for comparison between published liquefaction data

which are predominantly periodic. The second, a random amplitude acceleration time

history was included in the program to more closely simulate the type of motion actu-

ally experienced during a seismic or a blast induced disturbance.

5-3A Harmonic motion

A nominal 10 Hlz table motion was used in all harmonic test The 10 Hz fre-

quency was chosen because it was high enough that significant acceleration levels

(> 2 g) could be achieved within the stroke range of the actuator and yet was well

below the natural frequency of the unstrained sample, thus permitting an assumption

of uniform accelerations throughout the height of the sample. As can be seen in Figure

39, acceleration time histories recorded at the top of the specimen confirmed that the

ratio of sample to table accelerations was, in fact, approximately equal to 1.0 with a

phase shift consistent with a wave speed of about 1000 in/sec.

De Alba [381 had constructed their sand samples using a reaction maw which had

been placed on top of the sample. In an attempt to explain experimentally the differ-

ence between DeAlba's and our results, our test conditions as described above were

modified. The modification consisted of a reaction mam gimila to that used by DeAlba

being added to the test specimen.
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5.3.5 Random Motion

A standard method of illustrating the frequency content of an acceleration time

history is by means of a Fourier amplitude spectrum. The Fourier spectrum is an indi-

cation of the final energy in the excitation as a function of frequency. In the context

of the liquefaction tests, the peaks of the spectrum represent frequencies at which rela-

tively large amounts of energy were supplied to the shaking table/sand system. The

Fourier amplitude spectrum for the input excitation is presented in Figure 40. The

spectra show the dominant frequencies of the pink noise input to be between 6 to 15

Hz. This frequency range was selected to symmetrically bracket the harmonic liquefac-

tion potential data. The input motions were derived from data generated on an IBM/PC

XT microcomputer and show an essentially constant amplitude in the desired frequency

range. Three different time histories, each with esentially the same spectral content,

were used as inputs to the shaking table.

5.3.6 RESULTS

The studies presented in this chapter were conducted to provide a better under-

standing of the liquefaction phenomenon through large scale liquefaction potential test-

ing, and to provide data from carefully controlled experiments which would be suitable

for use in model verification. Herein, a summary covering principal findings is given.

Details are available in items 1.11, 1.16, 1.18, 4.3 and 44 of Appendix B.

The results of the harmonic input liquefaction tests performed on isotropically

consolidated samples during this study are presented in Figure 41. The data are given

in terms of number of cycles of shaking required for the sample reach the liquefied

state versus the cyclic stress level. This type of presentation has been used by other

investigators [88,96,107,145], and is presented here to facilitate a comparison between

data collected in this study with those presented by DeAlba (381 In Figure 41, it can
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be seen the samples tested on The Ohio State University facility were consistently less

susceptible to liquefaction and predictions based upon our results would result in much

less conservative estimates of liquefaction potential.

When the results of the aninotropic tests are presented in the same format u the

isotropic test data, using the mean normal strew to represent the effective confinement,

the curve defining the number of cycles to liquefaction plots very close to the curve

of the isotropic results as can be seen in Figure 42.

As shown in Figure 43, little effect on the liquefaction potential was seen exper-

imentally when a reaction maw simila to the type used by DeAlba et.al. was placed

on top of the sample. This result would indicate that the presence or absence of a

reaction mass (regardless of its height) had Little effect on the liquefaction potential of

the sand sample.

The results of the different tests conducted using random motions are presented

in Figure 44. It can be seen from this figure that although there is general qualitative

agreement regarding the observed liquefaction potential among the different types of

random dynamic loadings applied, precise quantitative agreement was not observed.
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5.4 DISCUSSION

The motivation for the test program conducted at The Ohio State University has

been the generation of data to be used in the development and verification of mathe-

matical models. This purpose was different from any of the previous laboratory pro-

grams in that the chief goal of those programs was to develop empirical relationships

which would, for a limited range of field conditions, allow seismic designs to be made.

Therefore, in the current study, although the sample boundary conditions applied were

designed to simulate stresses in the field as closely as was practical, it was imperative

that the design of the test apparatus allow for boundary conditions which could be

clearly defined, that the material constants be thoroughly described, and the density of

the sample be as uniform as practically possible.

Over the duration of the project, several experimental programs have been con-

ducted. The results of these programs have shown that the test apparatus used was

capable of operating successfully and providing consistent' results. The relatively small

offsets between the points identifying the onset of liquefaction as plotted in Figure 41

can be explained by observing that similar samples were often of slightly different rel-

ative densities. It was also shown experimentally that tests conducted with the same

testing apparatus continued to provide consistent results even with the addition of a

reaction mas of the type reported by DeAlba [38 Therefore, the boundary conditions

imposed on the top of the sand sample by this reaction mass cannot be the explanation

as to why the testing apparatus used in this study gave much different results for

liquefaction potential when compared with the results presented by De Alba [381 Other

boundary conditions must have existed in their samples which we have not been able

to reproduce with the apparatus used in this study. It is likely that the precise meth-

od used by DeAlba (381 to attach the steel shot filled bag to the top of the sample

chamber caused localized stress concentrations at the sand-shot interface. These small
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zones of high stress intensity would then be expected to generate locally high pore

pressures resulting in premature liquefaction.

Although some soil structure rearrangement is certainly likely during cyclic load-

ing, we find it difficult to attribute the eightfold strength increases observed by Seed

[158] solely to the change in structure which might result from the shaking of a

homogeneous sample, particularly while maintaining the same density. What is more

likely is that the pre-liquefaction shaking and subsequent drainage of a specimen

resulted in the formation of a more uniform sample. Wolfe [172] has shown in earlier

tests conducted on cubical specimens which were loaded cyclically to liquefaction and

then allowed to drain, that a much smaller strength increase is observed, one that is

consistent with the observed increase in relative density which follows shaking and

subsequent reconsolidation.

Three different band limited white (or pink) noise excitations provided the shear

stress on a number of isotropically consolidated samples. From published reports avail-

able to the authors, it is believed that these were the first such tests conducted on

large scale samples. All acceleration time histories contained the same dominant frequen-

cies (6 to 15 Hz). If, however, the time to liquefaction is plotted versus maximum

shear maximum shear stress ratio, different curves for the different input motions

emerge. Therefore, it appears that the use of the maximum shear stress within the soil

sample during cyclic loading is not by itself an appropriate method with which to

characterize the effects of ground shaking on liquefaction potential.

Several potential causes of the differences between the liquefaction data obtained

in this study and the data reported by DeAlba (381 can be identified. It is apparent

that liquefaction is essentially a local phenomenon, ie. local irregularities greatly affect

the initiation of liquefaction. Therefore, non-uniformity in the material itself, or in

the load applied should be investigated.
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5.4.1 Non-uniformity of sand samples

An experimental program conducted by Mulilis [107] showed the importance of

the method of sample formation on the liquefaction resistance of a specimen. The sam-

ples prepared by DeAlba [38] were made by pluviation through lair and subsequent sat-

uration, whereas all the specimens prepared in the present study were saturated by

boiling under a vacuum then deposited entirely under water at a constant drop height.

The data presented by Mulilis [107] clearly show that samples made by these two

methods demonstrate different cyclic strengths. They attributed the strength differences

observed to significantly different soil structures. A review of their findings shows

that although the wet pluviation technique we used can be expected to result in high-

er cyclic strengths than does dry pluviation, it is not likely that the structural differ-

ences obtained alone can explain the magnitude of the difference we have observed

between the two sets of results. Castro [321 attributes the cyclic behavior of sands to

changes in the void spaces at the local level. Marcuson [95] in reporting the results of

an experimental program designed specifically to study the effects of sample uniformity

on liquefaction resistance, observed markedly increased cyclic strengths in highly uni-

form samples. Furthermore, Gilbert [561 has recently shown that samples prepared by

pluviation through water are more uniform than samples prepared by the popular

method of moist tamping.

5.4.2 Nonuniformities due to testing

Wood (173] observed that pore pressures measured at the ends of the triaxial or

simple shear sample are unlikely to be useful unless tests are done slowly enough to

guarantee pore pressure equalization throughout the sample. In all tests conducted dur-

ing this study, measurements of pore pressure rise were made within the sample itself

not at a sample boundary. Furthermore pore pressures were measured at more than one

S
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location in the sample during every test. A comparison of the pore pressure time histo-

rie made during the test indicates that at any instant in time a uniform pressure

existed throughout the central portion of the sample. As shown in Figure 44, this time

dependent but spatially independent pore pressure was typically observed throughout

the duration of the test.

5.4.3 Membrane penetration

Lade [87] and Hernandez studied the effects of membrane penetration on the

undrained response of sands in triaxial compression. They observed that the existence of

membrane penetration in samples being subjected to cyclic loading results in in increase

in sample volume as the pore pressures in the sample rise during shaking. This volume

change, if not accounted for, would result in an overestimation of the liquefaction

resistance since the test was in reality a partially drained test. Lade and Hernandez

cite data which indicate that membrane peneteration is negligible for sands with grain

sizes *below 0.1 to 0.2 mm. or for effective stresses below 1.0 kg/sq cm. The grain size

distribution for the Ottawa sand used in this study was given in Figure 38 This fig-

ure shows that the sand used roughly corresponds to sands falling in the range where

the membrane effects would be condidered negligible. Also effective stresses on the

sample were typically on the order of 1.0 kg/sqn.c Nevertheless, due to the large sam-

ple surface covered by the membrane, it was felt to be. important for the amount of

membrane penetration to be measured accurately in order to assess what effect, if any,

membrane penetration had on our liquefaction measurements.

The penetration of the membrane into the sample was measured after the sample

was pressurized to the test conditions and before the internal supporting walls were

retracted. The test chamber was attached to a volume change measuring device. With

the isotropic confining pressure constant on the saturated sand sample, the back pressure
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was incrementally raised to simulate generation of an increase in pore water pressure

during actual dynamic testing. Membrane penetration could be measured as movement

of the membrane out from between the sand grains and recorded in the form of vol-

ume change on a manometer. The amount of membrane penetration measured was

consistently less than 1.75X10'" percent of the sample volume. This amount of penetra-

tion was considered negligible.

5.4.4 Nonuniformity of the confining pressure at the sample boundaries

Since in the shaking table configuration used, the confining water must be accel-

erated along with the sample, there was some concern that the mass of the water,

which was arbitrarily chosen, could be affecting the distribution of pressures on the

vertical faces of the sample. Early measurements of the pressure in the confining fluid

had failed to show any variation during shaking, but it was felt that additional test-

ing was warranted. Therefore, in a specific attempt to determine experimentally the

effect of the volume of confining water on the uniformity of the confining pressure

and therefore on liquefaction potential, plates were inserted into the space occupied by

the confining fluid. The effect was to reduce the volume of water by more than 50%

No effect on liquefaction potential was observed.

The results of a test program in which saturated sand specimens were subjected

to harmonic as well as random time histories of base accelerations have been presented.

The data show that loose sands can be liquefied in the laboratory and that the resis-

tance to liquefaction is strongly dependent upon the sample boundary conditions. The

test apparatus employed in the program described herein minimized stress irregularities

at sample boundaries and should therefore be seen to be an improvement over other 0

laboratory methods for determining liquefaction potential.

--- ---....
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Section VI

DISCUSSION

6.1 OBJECTIVE OF THE RESEARCH PROGRAM

The objective of the research program was to critically examine the theoretical

basis of the equations governing the behavior of saturated soils under dynamic loading

in order to identify/develop appropriate theory which would properly allow for soil-

water interaction and be thermodynamically consistent. The work would involve

implementation of the theory or theories in appropriate solution procedures. A program

of laboratory investigation was included to constitute a reliable database for verification

of the theoretical findings.

6.2 ACCOMPLISHMENTS

6.2.1 Review of Theories

The existing theories have been carefully reviewed. Limitations of the theories

and their differences have been carefully listed and discussed. The main findings of the

research program have been discussed at length in -the text of this report and in the

publications listed in Appendix B. A brief summary of the conclusions is given below.

The commonly used "engineering approach" to study of liquefaction, though it has

been successfully utilized for the study of many case histories, cannot be directly

extended to multi-dimensional situations. Even for simple one-dimensional cases, it

requires considerable "judgement" on the part of the engineer in addition to tedious

laboratory investigations on the dynamic behavior of the soil.

171 -
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Biot's theory uses some ad hoc assumptions. These include the existence of an

energy function for the mixture and the existence of an inertial coupling introduced

through a kinetic energy expression involving product of the velocities of the soil and

the pore-water. There are questions regarding the existence and the nature of this

coupling. Definitely, under certain circumstances (e.g. small pore size) a portion of the

fluid could be moving effectively with the soil. This coupling would only constitute a

different partitioning of the total mass into one that moves with the soil velocity and

the remainder which moves relaive to the soil. However, the introduction of a "coupled

maw" appears to be entirely artificial and without any physical basis. Theories of

mixtures have been developed starting from different assumptions. Truesdell assumed

the additivity of the total energy of the constituents and proposed artificial definitions

for the stresses to obtain an identity of form between the equations of balance for the

mixture as a whole and those for the individual constituents. It is apparent that the

mixture does not have an existence as a continuum in motion and, therefore, the ques-

tion of writing equations of motion for it should not arise much lea the effort to

give them the same form as the equations for each constituent. Truesdell's "third postu-

late" which states that the motion of the mixture is governed by the same equations

as is a single body, is unnecessary and irrelevant. Green's theory, on the other hand,

assumes the additivity of stresses and fluxes. However, Green as well as Crochet, intro-

duced energy functions for the mixture. Their work does not necessarily require the

notion of a mixture as a continuum in motion. Bowen's contention that Gren's theory

is a special case of Truesdell's for vanishing relative velocities is clearly incorrect

because Green's theory is no less general than Truesdell's. There are differences in the

meanings attached to different terms even though the form of the equations is the

same. It appears that balance equations ought to be written for each constituent allow-

ing for interaction. Introduction of thermodynamic quantities associated with a mix-
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ture as a continuum in motion is incorrect. These quantities, in relation to the mixture,

must arise as a consequence of the quantities associated with individual constituents

and need not have any physical interpretation.

Truesdell and some others wrote the equations of balance directly considering the

motion of the constituents of the mixture across an elementary fixed volume in space.

The contents of this fixed volume change constantly. For this reason, some investigators

have proposed writing constitutive equations for porosity. This would be unnecessary if

the balance laws are written for the same set of soil particles as in Gibson's theory of

nonlinear one-dimensional consolidation.

Constitutive relations are required for the diffusive resistance or the interaction

force. TruesdeU's theory of mechanical diffusion includes other theories as specializa-

tions. Green's theory is quite similar.

There is considerable confusion regarding the definition of partial stresses. Terza-

ghi's dual definition for effective stress cannot be accepted. The effective stress is dif-

ferent from partial stress in the soil. The latter includes dependence upon the kinemat-

ics of the fluid in addition to the dependence upon the kinematics of the soil whereas

the effective stress is defined as the part of the soil stress which depends directly

upon the strain in the soil skeleton. Biot's and Green's assumption of the existence of

an energy function for the mixture would lead, in the linear case, to a symmetrical
S

constitutive coupling between the soil and the water. However, because this assumption

is questionable, this coupling, even if it exists, need not be symmetrical This is in line

with Morland's views.

o0
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6.2 A Dynamical Theory of Saturated Soils.

A theory of dynamics of saturated soils was developed. This theory is based upon

the study of balance of a fixed set of particles of the soil contained in a reference

volume in the initial configuration. This reference volume moves during the process

and changes shape as welL The description of deformation and motion was accom-

plished through the use of convected coordinates as introduced by Novozhilov [1121

This eliminated the need for writing constitutive equations for porosity. It also enabled

a clearer definition of the stresses acting on the representative volume. The theory may

be regarded as an extension of Gibson's theory of one-dimensional consolidation to three-

dimensions and inclusion of inertia effects.

6.2.3 Development of Solution Procedures.

Truesdell's as well as Green's theories, for the case of small motions coincide with

Biot's for dynamics of saturated soils. The new dynamical theory of saturated soils

would also coincide with Green's theory if the representative volume containing the

fixed set of particles undergoes extremely small deformations. Very few solutions were

available for the problem. Exact solutions had been developed by Biot and some other

investigators for some simple problems. Numerical solutions had been attempted but

they had, in general, not been verified against exact solutions and were suspect. In the

present research effort, in order to study the effectiveness of various theories in mod-

elling dynamic response of soil systems, it was necessary to systematically develop

solution procedures. These included exact, semi-discrete, as well as numerical solutions to

Biot's formulation of the problem of wave propagation in saturated soils and numerical

solution of Seed's and Finn's theory. Solutions were also developed for the case of non-

linear material behavior.
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Exact solutions were developed for several cases of loading of an infinite column

and of a finite layer of saturated soil. For the infinite column, these consisted of

integration of Garg s fundamental solution. For the finite layer solutions were devel-

oped for the case of independent specification of velocities of the fluid and the soil at

the boundary. In case of a sudden application of velocity, the singularity was separated

from the smooth diffusion and the two solutions superposed for the linear theory. It

was noticed that Garg had made some assumptions for the case of "weak coupling"

and some others for the case of "strong coupling". The validity of these assumptions

has been carefully examined and documented.

Semi-discrete solutions were developed using the Laplace Transform technique in

conjunction with a finite element discretization. Effect of refinement of mesh upon

the accuracy of the results was examined. The eigenvalue problem becomes extremely

large with mesh refinement. This approach, though useful perhaps for benchmarking

numerical time-domain solution procedures, was seen to be computationally too expen-

sive.

In order to develop finite element solution procedures in a systematic manner, the

equations of motion were written in self-adjoint form in an appropriate space. Varia-

tional formulations along with extensions and several interesting specializations were

developed. Numerical solutions using spatial discretization by finite elements and numer-

ical integration over the time-domain using interpolation schemes of suitable order, were

developed and verified against some exact solutions. Several types of elements were

used to obtain an optimal combination of accuracy and computational economy. For

suddenly applied dynamic disturbances, it was found necessary to use "singularity" ele-

ments to properly reproduce the wave propagation.
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For Biot's theory, the usual form is the two-field formulation in which the

displacements of the constituents are chosen to be the field variables. A three-field for-

mulation including the pore-water pressures as the additional field variable was written

and finite element solution procedures developed for the same. It was found that this

scheme gave practically the same results as the two field formulation for the problems

in which the velocities were specified. However, the two-field formulation applies the

specified fluid pressure condition (e.g. free-draining boundary) in an indirect manner.

In the three field formulation this specification is direct.

Computer programs for two-dimensional wave programs were developed but could

not be checked against exact solutions because no solutions for wave propagation in

two- or three- dimensional saturated soil systems were available.

Wave propagation through nonlinear saturated soils was modelled in a finite ele-

ment based computer program. No exact solutions for wave propagation in nonlinear

saturated soils are available. The code was checked against two solution for wave pro-

pagation in a single nonlinear material continuum.

6.2.4 Laboratory Investigations.

Shaking table tests were conducted on saturated samples of a uniform Ottawa

sand. The use of a shaking table combined with the large size of the samples mini-

mized the effects of stress irregularities at sample boundaries and the method used to

construct the samples minimized material non-uniformities. In the program described in

this report both harmonic and random amplitude table acceleration time histories were

utilized. A significant increase in the resistance to liquefaction, as compared with the

results of other published experimental programs, was measured. Potential causes for the

differences in test results were investigated. It was concluded that the test apparatus

and the methods employed in the current program should be seen as an improvement

over other experimental methods for determining liquefaction potential
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6.3 FUTURE WORK

Additional work on research in the general area of dynamics of saturated soils is

neede& A major shortcoming of the available models is that they have not been care-

fully tested against actual experiments in the field or in the laboratory. The reason for

this is that experiments simulating simple boundary conditions are difficult to set-up

and most experiments that are convenient to carry out constitute very difficult

boundary-value problems for which verified computer codes are difficult to come by.

There is need to design test set-ups which are essentially one-dimensional wave propa-

gation experiments so that the carefully verified solution procedures developed in the

present research can be used to substantiate the theoretical concepts regarding behavior

of saturated soils. On the other hand, there is need to develop analytical solutions to

two- and three- dimensional linear as well as nonlinear problems so that the data

from shake-table tests which are essentially two- dimensional, can be utilized to

verify the theoretical models. Any of the models would need material properties as

input data. There is need to define the nonlinear behavior of saturated sands very

carefully and to relate it to the propertries of the single materials involved. There

has been difficulty even in characterising dry sand behavior [1101 For saturated

materials, the role of the pore-water pressures, the existence and the nature of the con-

stitutive coupling and the existence or otherwise of the inertial coupling need to be

studied. The relation between the mechanics of the particles and the behavior of the

soi m- needs to be investigated. The soil in the field as well as the laboratory is

never absolutely uniform. The spatial variation in material properties would be greater

in the field than in the laboratory where the conditions can be controlled. The effect

of the degree of randomness on the overall behavior of the soil is extremely important

for realistic utilization of the results of the experiments in the laboratory for the situ-

ation in the field. Also, spatial variation in material properties could result in local

S.
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liquefaction leading to perhaps a "domino" effect in promoting catastrophic liquefaction

in the soil man in the field even though the soil might have been found to have

high resistance to liquefaction in laboratory tests.

4J
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Appendix A

NCOORDINATES

This appawfix ammins a summary of sme dedlutume relatons and formulae

related to the use of Conveted Goordwnts in the machani of owtinua. The dscus-

follows Gree (651 and Fung (471

A.1 NOTATION

ind*co, which may either be subcnpti or suenpt, ic, as z'. ,. pa. q4 x,.

aze und to denote omponenmt of temn of varkxu order A =&le el m t q hav-

ing no dac o u iw a gsm of mro ader. System of elements with me and

two dic. anres pecuvely. termed first oa and ood oder.

The summaton conventwo ud throughout this epos =plm that the epeutoio

of an &ndez (whether supoiscn pt or subscript) in a term denote smmmtbon vith

rspec to that index aver the range 1. 2. 1

A.2 COORDINATE TRANSFORMATION

Let 9 denote a set of independent vanabl, whose differenuals are d9'. The

mapp ng of 0' into another set of variables by any arbitrary single-valued functon

of the form

U' =9' (W1. 2. 0) (A.1)

191
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spmfm a transformatio of coordinates. Here we have uned the mine notation for the

functio and it value. The arbitrary functions are umaned to po derivatives upto

the order requned. The inverie transformation is ammed to be sangle valued and

written am

V' -0 W W. 02. I1)(A*.2)

The differentials df and dF an related by

d - d0 (A-3)

Evdently.

~c! Cie C j - 8 (A.4)

where & k Kronecker's delta. For rvembtty of transformaton it is sufficent that

[651

Cm =r 1 8, 0 (A.5)

While the ansformaom of the differentials in (A.3) a Inm. the trmn'ormatuons of

variabls n (A.1) and (A-2) are no necemialy linmr. The coordinate transformatio

with the properte desriled above. along with the condition (AA), re clled the

admin ble tranormaons (471 if C a pomave everyw he, then a right-handd t of

coodinst is transformed into another right-handed et and the trasformation is prop-

et. In this work. the tram formautom are amumed to be adIm'ible and proper. unlem

otherwise stated.
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A-3 CONTRAVA IANT AND COVARIANT VECIoDRS

A system of order zero has only a sngle component 0 in the variables i and a

ale compmmt I in the variable s . is scals if for aU F.

Let a system of order one have componenw A' and i. n the vaiables

0' and F. wsctvely. Then. if

the functios R and A' ane contravanant components of a tensr of order one. A sys-

tm is a covarant tensr of order one if the components B in the varablea 01 and B

in the vanabim F a,, related by.

,-C'B B (A)

Coitravarnnt taser compoent ar indicated by supecripts and covriant compooents

by subscripts Trnsormaoas of ccxtravariant and covauiant composet of secood

order teanwr are iven by.

VI- C'. &. A so (A.8)

and , Im C 7C 7 B .. 
(A.9)

(A-3) &hows that the differents ransform according to the law of contravarant ten-

sors The use of upper index is appropriate in that cam The vanabm 0 themselves

are, in general, neither contravartant nor covanant and the position of their index is

only a matter of convenience.
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AA CUR VI1NEAR COOIDINATES

Conaider the coordinates xi or x, referred to a right handed orthogonal system

Figure 45, of ame in a thyet-dimensonal Euclidean s Let an admisible transforms-

tcs of the types dieumud earler to 0' coordinates be defined by

W=W(xlo . X) ) (A.10)

Snce for each set of values of z then exm a unique st of values of 0. it is pim-

ble to reprnnt the Euclidemn sa by the vaaiabes V. instead of carman system x,

The relattims

#(X. x r z 3 )-cmxtant (A.ll)

with i - I to 3. reprm t thre famili of cordimnate surfaces and the point of inter-

secti determines a point P in spwe. The condiuo imposed on W' ensure that such a

point is uniquely defined. The intersctions of the coordinate surfaic are coordinate

curves and 0 are curvilinear coordinates.

A.5 RASE VECTORS AND METLIC TENSOIS

Let I be the position vcur of a point P. whoe coordinates are x, or x' and let

dR denote the infinitesimal vector PQ. where Q has the coordinates, i +4 or x'+ dx'

Then (Figure 46)

a -x ie - X, ei (A.12)

and

dt = dzi @'- dx'e (A.13)

where a, and e' are unit vetor. If ds - RI is the length of vector PQ, then

(da) 2 = dR. dR = dx, di, (A.14)

If 9,. 9' are one to one continuous mappings for the x, x' systems.

LS
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Figure 46: Position Vector and Its Differential
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d - 11-0d dz'- j- d9A'5)am,

Consequently

dl -dx 8' u o d- rGdO (A.7)

and also

dR di a ' d9l - G d0 (A.l 8)

where

The Kronecker delta and the permutation symbols are defined in rectangular

cartesi n coordinate system as

8=8 = 8 '=8J=O for itj (l=for i=j) (A.20)

0 (when two indices are equal) S

e,, =e'= I (when i, j, k are in even permutation) (A.21)
-1 (when i j k are in odd permutation)

Their counterparts in general coordinates 04 are as follows:

Gij =OG..OG = 8-1 a -OxnxA.2)
ji 89i O&

G j -- Gi. Gj = aw -O U1.3)

G'=-Gj.G i "  .8i (A.24)
j i a x m *
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-r I-i (A25)

e* "e t ~ k IJ~ - t ~k (A.26)
~ IAGa's J'o

when G is the determinant i) and is positive for any proper coordinate system. The

vectors G, and G' an connected by the relatios

O'-G O j GOj ;  0 -Gil G' (A.27)

GU the Euclxdean metric tensor of the coordinate system and G'J is the aociated

metric tensor [47] The magnitudes of these base vectors are,

IG I Wjd1_ = ju

IG il = - 16 (A-28)

where the index is not summed. The line element d in (A.14) may now be written

in the form

2|

ds2 = dR. dR =Gj de'dOJ = G ij d d8 j = d9i d9 (A.29)

A.6 PHYSICAL MEANING OF COVARIANT AND CONTRAVARIANT

COMPONENTS OF A VECTOR

A vector w in terms of covariant and contravariant base vectors is

w=wG i = w G' (A.30)

where by (A.27),

w. =G..wJ  w = Gijw. (A.31)t Ij j



According to (A30). if w is represented by line vectors, then w are the components

of w in the direction the covariant base vectors G while w, are the components of

w in the direction of the contravariant base vectors 0' A two-dimensional illusration

is shown in Figure 47. Some other result ar

vT.w-OGU vI W, - Gi V, w vi w- v i w i

tWI - IW- fw (A-32)

(A.30) can also be written as

W W G (no sum) (A33)

w , are component of w resolved in the direction of the unit vectors

which are tangent to the coordinate curves. A similar interpretation for w, - ' is pos-

sible. These components viz. w G-m and w, vfGO (i not summed) do not obey the

tensor transformation laws and are not components of tensors.

"0

o

a
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A.7 PARTIAL DERIVATIVES IN CARTESIAN COORDINATES

Consider X, a cctravariant tensor of order one, expreed as a function of coor-

dinate system ir The relationship with the dewciption in the coordinate system , is

given by (A.6) as

Va' ir i 3)=A k(zv V r x 3) (A.34)

Differentiating

Gil' 8*14 + MiJ1k

aAk 21 iL! - I + (A.3S)

If the two cartuan coordinate systems an related by an affine transformation.

-a I,z+b t. aN dt being cstanti -- - 0and -- av. Hence

(A-36)

(A.36) umpLk. that for canaan systems related by an affine transformation, the par-

tal derivative M follows the transformatuo law for a mixed tensor of order two.

The mcad order tem in (AJ5) don not vansh in curvilinear coordinates and thus

th partW, derivauve of the tensor does not yield a higher order tensor.
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A.8 COVARIANT DIFF KZMEiATION

If R is taken to be a scalar function of the general coordinates viz.

Rt=Ri(OI9 Or 0 3) (A.37)

then

G, = R = OR (A-38)

The differentiation of ban vectors G, yields

G =82R =R= R (A.39)

Recalling (A.19) and noting that a, form a set of constant bane vectors,

-- = •,rO (A.40)

which, upon use of (A.19), becomes

GW = r,, Gs= r Gr (A.41)

where

r,,, = 8.x, r  (A.42)

and

r r j= GT r r, (A.43)

(A.22) and (A.42) give

r*, = I [Gj G -G, , (A.44)

2

Similarly, (A.29) implies

G i = - ri G r  (A.45)
.3 J r

The symbols r,., and r", are Christoffel symbols of the first and second kind, respec-

tively. If w is a vector
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Aw- m Cr-O-w q W(A.46)

mo that w. transform according to the covariant transformation. Also, from (A.30),

W = wr Gr + wr Gr

= W r i O
r + w r Gri (A7)

Using (A.41) and (A.45)

W - wr1i O r = WA Gr (A.48)

where

wri r w r +r rt W (A 49)

wri = w.i - Ir, w, (A.50)

The expressions w I, and w), are the covariant derivatives of w and w,. respectively, of

the vector w. Since w. transform according to covariant transformation, it follows

from (A.48) that the covariant derivatives of a vector form a tensor of order two.

Similarly, we can write expressions for derivatives of second order tensors in the fol-

lowing form,

Atjr = Ajr -- r'ir Aj - rmJr Aim

A"IJr = A",r + r'. A"j + rm A" (A.51)

A.9 GEOMETRIC INTERPRETATION OF COVARIANT DERIVATIVES

Consider a vector field w associated with every point in space in the region

under consideration. Let the vector w at a point P (0W  , 03) be

w (P) = w'(P) G, (P) (A.52)

At a neighboring point Q (0' +dO', 02 +d02, 6' +d 3), the vector is

4w (Q) = w (P) +dw (P)

- a ... . ..
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"[w' (P) + dw i (P) I [Gt (P) + d~ i (P) ](A-53)

Taking the limit as dU- 0, we get,

dw = [w'+ dw] [Gi +dG ] - w'G -- wdG, + dw'G (A.54)

and the derivative

wi 8G + a, C,(A.55)

Thus, the derivative of w consists of two parts vi, one due to the variation of the

components of w as the coordinates 8' are changed and the other arising from the

change of the base vectors G, as the position of the point 0' is changed. Use of (A.41)

in (A.55) gives

=W + w'r r j; G,
j rr

~wrI jG (A56)

Thus the contravariant derivative w'1 represents the components of -w referred to the

base vectors G,.

A.10 GRADIENT, DIVERGENCE AND CURL IN CURVILINEAR COORDINATES

The gradient (grad 4,), divergence (div F) and curl (curl A) where

is a scalar and F, A are vectors are given by

grad 0 = O.r G r  
(A.57)

div F = Fr'I (A.58)

curl A = ert A I G (A.59)
Ir t
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The functions are invariant under general transformation of coordinates. More conven-

ient forms are as follows:

grad G'k (A.60)

divF=V.F=GF.

=G r. G F'I (A.61)

---FrIr

= [_ (,- Fr),r (A.62)

curlA=V XA - G r  xAG'0

-- T O .. L (A G') (A.63)

f rlt A r Gt

If w is a vector defined throughout a volume V, which is bounded by a closed sur-

face S and if n is a unit vector normal to the surface, then the usual form of Green's

theorem is

divw dV = fw. n dS (A.64)

Alternatively, in tensor notation,

9 v d'fVS= ' G, '),rdV wrnrdS (A.65)

where

n=nr Gr (A.66)



206

A.1I KINEATICS AND KwiECS

A.11.1 Introductory

The particles of matter that occupy regions of Euclidean space form a body. A

given body, B, may occupy different regions at different times. For convenience, we

denote the configuration at time =0, as a reference configuration C. The fixed

region of space C is occupied by particles of the body. Now, if this material moves

so that at a subsequent time r = t, it occupies a new region of space C, then the body

is said to have undergone a motion. Mathematically, this can be represented by a series

of coordinate transformations. In particular, the proper transformations assumed in this

work ensure that the axioms of continuity and impenetrability are followed. As the

continuum moves from one configuration to another, the matter in the neighborhood of

each point is translated and rotated as a rigid body and is strained. Strain of an ele-

mental volume is that part of the relative motion between neighboring particles that is

not due to the rigid motion. In this section various measures of strain due to relative

displacements are described with reference to a single material.

A.11.2 Geometric Relations

Consider a continuous three-dimensional body in the reference configuration C. at

time r = 0. Let a system of coordinates a, be so chosen that a point P of the body is

described by P (a,, a2, a,). At time r=t, let the body be'in configuration C, having

undergone a motion. The particle P, originally in C1, now be at Q in C, with coordi-

nates (x,, x2, x). The coordinate systems a and;r, may be curvilinear and need not be

coincident. They both describe a Euclidean space, Figure 48.

The admissible transformations of the type described in Section A.2 are

xi=zi(a l , a2, a ) (A.67)

which has a unique inverse
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Figure 48: Deformation of a Body
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al =a, (x 1, x2 13) (A.68)

Consider an infinitesimal line element PP in the reference configuration C, such

that P is given by P(a, + da).Then, ds., the length of PP, is

ds2 = a,,da daj  (A.69)

Here au is the Euclidean metric for the coordinate system a. Let a corresponding line

segment in the configuration C be QQ and its length ds. Then

ds 2 = G dx'dxj  (A.70)

where G, is the Euclidean metric tensor for the coordinate system x. Recalling (A.15).

The change in length is:

ds2 - ds 0 [Gm & --a.) da'daA

o n al i j I (.71

or equivalently,

ds2 d82 - - a It d id j  (A.72) 0

Defining strain tensors

E.. (- 1 n [G l * S.-.-a 1  (A.73)0

eij= ![Gij - are eaI(A74
'~ 2 'J ~i9

we get

ds2 _ di 2 E da idai (A.75)
0 13

or

Csi - Ca 2  2 e dx dxj  (A.76)

E, and e,,, are, respectively, Green's strain tensor and Almansi strain tensor [47.
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A.11.3 Description of Deformation

Generally, the initial and the deformed configurations are described with reference

to a fixed rectangular cartesian frame.

However, an alternative introduced by Novozhilov [112] is to use a frame of ref-

erence which moves continuously with the body and deforms in such a way that the

numerical values of the position coordinates of the particles of the body remain the

same throughout the motion. This is convenient for finite deformation [47]

For fluid motion, the interest is centered not on the displacements of the particles

or their velocities but the velocity distribution in the volume occupied by the fluid.

The most convenient mathematical framework for this purpose is the Eulerian coordi-

nates [1121

Consider a rectangular cartesian coordinate system a, shown in Figure 49. The

position vector of a typical point P. in the reference configuration C is

r = a C, (A.77)

where e, are unit vectors along fixed axes. Let a typical point P. in C occupy posi-

tion P in the new configuration C at time ?(O<,7"<,t). The position vector of P

referred to the same fixed axes is

R = z, e, (A.78)

Components of the displacement vector are:

uI= Z- a (A.79)

Also, the one to one correspondence between points in C and C, implies

zi =z (a,, a2, a3) (A.80)

a, = ai (z,, z2' z3)  (A.81)

S,
0
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Figure 49 Convected Coordinate System
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where a, and z, are admissible transformations. Here we do not differentiate between a

function and its value. The difference will be clear in the context.

The velociy v of a particle referred to the fixed system of axes, is

v== v e (A.82)

It follows from (A.79) that

vi=' = u (A.83)

Similarly, the acceleration f of a particle referred to the fixed system of axes is

f = f. e, = =I (A.84)

and

f. = , U = vi (A.85)

The initial state in C. may also be described by a general curvilinear set of coor-

dinates x, so that,

ai--a1(z ,, X. Y '" = 0) (A.86)

where a, is single-valued and continuously differentiable as many times as required.

We may imagine this curvilinear system X; to move continuously with the body as we

pass from the reference state C at r = 0 to the state C at r = t. The triplet of real

numbers x, are merely the labels that we assign to the positions corresponding to the

material particles of the body in the reference configuration C. The values of x

remain unchanged for the new position P in C. The coordinates ; may be rectangular

or curvilinear in C, but are curvilinear, in general, in C. Thus the coordinates of P

with reference to the invariant convected coordinates are

z fi zi(xi, X2 , X y 30 fft) (A.87)

Using (A.15) and (A.86), we may define a contravariant vector dx', in C as

dx' .- da da'= -- dx' (A.88)
aj (8j

From (A.80) and (A.88)
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dz' = -daj= dxj (A.89)

and

dx' ~dzj (A.90)
azj

at a fixed time. The position vectors of P. and P, respectively, take the form

r = r( 1 , x2' 3) (A.91)

and

R=R(xI x , x t) (A.92)

The displacement vector is

u--u(xi , xr, x 3, t) (AM9)

Noting that the convected frame x is rectangular in C, the base vectors g,, g? for the

system x, in the body at C. are

1= r =• i  (A.94)

g'. g' = e. 81 = 8i (A.95)

The metric tensors g,j, gJ are

gij - gi gj -- 8 gij iJ = gi i gj = 8ij (A.96)

Similarly, the base vectors G, G' and metric tensors G,,, Gi" for the curvilinear system

z, in the body at time t are

G. = R. G G = 8 (A.97)

G =G = az  w (A.98)

G"i'= i- G" (A.99)Vr aZ"

The strain tensor in convected coordinate system z, is defined as

S
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,y|J--- (O ij - gij)?- (G i - 8i WAOO)

For line elements corresponding to the vectors r and R viu ds. and ds, respectively,

dso = gj dxdx = 8,, dx dx' (A.1O1)

ds2 = Gij dx'dx (A.102)

and

ds2 - ds = 2 -yij dxI dxJ  (A.103)

yu may be expressed in terms of the displacement vector u or its components

with respect to the base vectors g, (ie.e) or G,. We have

G i -- R~i - r~i + uA = •t + u~i = (gmt + uje )e= -(Smi + UM ) em (AA04)

H e n c e , +

i =  (g9" u. j + 9j. U~l 2 i'j j -U '

The displacement vector u may be expressed in terms of base vectors of C, and C.

Thus,

m M

ua =u. e (A.106)

and

u-U Gm=UmG

ui = UM iGm -Um IGM (A.107)

(A.106) and (A.105) give

-Yij = - [u. +u. + u uu) (A.108)

Similarly, (A.107) along with (A.97) through (A.99) gives

1-uI +U *-U I( u A.1o9)

/
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A.1 1A Velocity and Acceleration in Convected Coordinates

When referred to the state C, the expressions for velocity and acceleration vec-

tor with respect to 14 coordinate are

yf Uet1 U- -u (A.Ii1O)

=Uiel(A.110i)
f ~ = t  ite u e, (A-1 11)

The vectors v and f can also be resolved in terms of the ban vectors G. G' of the

configuration C. Several alternative representations are possible. Thus,

vVGM vSG =  (A 112) 0

f=f MGM=f=G m  (A.113)

(A.79) and (A.104) give

G(A-1 14)

and

G" = - e (A.I IS)
8z

Hence.

f = f -OE e = f JIL, s (A-1I17)

8x" " azi 
e

Comparing (A.110) with (A.116) and (A-ill) with (A.I17),

v =u =u 1  (kii1)
8x

vmv u (4.1I19)

f- (A. 120)
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f (A-121)

A.151 Clafes in Volume and Area

The convted coordinate system is rectangular cartesian in the initial state and

Arhotwr in the deformed te r ectangular pralelepiedtir dcom iarelo a ped

400

If dAf dotis an etafrm yaa the refree fre on e corinat

pln ;incnst ten x=cosat(.l o3 A12

dVW (2x 3 2If I 2x 3 3 (A.124)

ATe den o u)formatoteoiil plae aidea oAf bhecomrepiaed sfaue dAf wih

but
t

dVo =- x dx dx3 - fG-dxo (A.126)

I A* deos tan lemetaryoeani the reer reed niuion onred noorinate

pted" Gt& ad 3 dne as itde j (s. m area 3 h nwvluei

dV= G 2 x3 dX U d (A.128)

but

,G ( a XG) Sl Gj A15

HenS
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G2 XG3 = 6 23t G t ' = ,-Ge23t Gt  /Gl (A.129)

The magnitude IG2xG31 is

I~zG2G3 1 = I, 'G(; 11 G (A.130)

Hence

dA -=_FO-G dX 3  (A.131)

In general,

dA 1=l G%/G-ddxk (no sum on i and i~ejPek) (A132)

in which dA, denote the areas in the deformed body which in the undeformed state

has values dA, (i - 1 to 3).

A.I1.6 Kinetics

This discumion follows [651 Let the surfaces ;Y = constat at a point P in the

deformed state C form a tetrahedron. The edges of the tetrahedron are formed by the

coordinate curves PP, of length ds and the curves PP2, P,. P3P,, (Figure 50). Let the

surfaces x, = constant of the tetrahedron have the areas dA1. These may be represented

vectorially by

G i dAI (A.133)

where G' i the unit base vector. Also, the area of P1PP. denoted by dA. is repre-

sented vectorially by n dA, where n is the unit normal to the surface. Hence, since

the area PPAP is vectorially equivalent to the areas dA1

ndA E I
ndA- . . 0' (A134
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0 30uv

Figure 50, Infinitesimal Curvilinear Tetrahedron
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so that if n, are the covariant components with respect to the base vectors G', it fol-

lows that,

n GidA GdA1

or n, Vl dA=dAi  (A.135)

Let t denote the stress per unit area of the surface at a point P in the deformed

body. Cauchy's equation of motion, following Green [651 is

f tdA + p(F-f)dV =0 (A.136)

where V an the arbitrary volume in the body in the state C and is bounded by a

closed surface A. Also, p is the density of the body in C. F and f are the body force

and acceleration vectors, respectively. Applying the equation of motion to an infinitesi-

mal tetrahedron PPP 2P. we have, in the limit, keeping the direction of n, the normal

to the area, fixed,

t dA = t. dA. (A.137)I I

Note that dA, are the areas of the surfaces of the tetrahedron under consideration and

t, are the stress vectors associated with these elemental areas. Volume forces and iner-

tia terms acting on the tetrahedron do not appear in this equation since they are of

higher order of smallns than the surface forces. (A.135) and (A.136) give
3

t n t. "f f (A.138)
I-I

The stress vector t is invariant under transformation of coordinates and n, are compo-

nents of covariant vector. It implies that t, is a contravariant type transformation

and

t, - =,r'j G.-- lr'G' (A.139)
I J J
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where iJ and 1 are componenets of the associated contravariant and mixed tensors of

second order, called stress vectors. (A.138) and (A.139) give

n T, =ij n i G =-i n G (A.140)

where

T rOti  =- f ' G J i= j (A.141)jI

T, is introduced for convenience. An element of area at a point ;, in the body C is

1r- dxdxk (i not summed and iejek) and the force across this element is,

ti  dxdxk- Ti dxj dxk (A.142)

The conditions at the boundary surface of the body, at which surface tractions are pre-

scribed, require

t = P = PiG j  (A.143)

(A.140) gives

flj n i =_ pi (A.144)

and

a n1 =Pj 
(A.145)

It is generally assumed that the geometry of the reference configuration is known a

priori, it is often convenient to define the state of stress at a point by relating to its

position in the initial configuration. The stress vector, t, is referred to a surface S at

time t in body C and measured per unit area of S. The stress tensor 14 referred to x,

coordinates in C and is measured per unit area of these coordinate surfaces.

If gt is a stress vector across the x surface in C, but measured per unit area of

the corresponding x surface in C, then use of (A.142), yields

Ti ddxk = 0 ti 4 gidxj dxk (A.146)

Sl
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If P is the stres vector measured per unit area of the undeformed body, associated

with a surface in the deformed body, whose unit normal in its undeformed position is

SD,

0t = oni Gj=si oniG (A.147)

where ,n=Ant n 1 . (A.139) gives

0t | V = O ,V = jGJ (A.148)

(A.148) and (A.146) give

--0 ti 'g " = = s'i G as g 1 for a cartesian frame (A.149)

where

Iij  f G ,rij  (A150)

sJ are componets of the second Piola-Kirchoff stress tensor (114. (A.104) along with

(A.141) and (A.149) gives

T, = r-,r ij (8m + u a; =S"(8 + u,; a .= -f : G-- - S (A151)

The stresses += ,J(8.,+u, ,) are measured per unit area of x, surfaces in C but are

referred to the base vectors e, in C, The stresses S.- sU(8. + u,) are measured per

unit area of the x, surfaces in C, and are referred to the base vectors e, in C, These

are not symmetric. The stress tensor defined by components S is called the first

Piola-Kirchoff stress tensor,

0l

S

0
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PUBLICATIONS AND PRESENTATIONS

The research program has resulted in the following publications and presentations

BI RESEARCH REPORTS

I.I. Ranbir S. Sandhu, Shyan-Cyun Lee, and Hwie Ing The, Special Finite Ele-
ments for Analysis of Soil Consolidation. Geotechnical Engineering Report No. 9, OSURF
715107-83-2, AFOSR Grant 83-0055, August 1983.

1.2. Ranbir S Sandhu, Mechanical Behavior of Saturated Soils - A Review, Geo-
technical Engineering Report No. 10, OSURF 715927-85-1, AFOSR Grant 83-0055, April
1985.

1.3. Ranbir S. Sandhu, Baher L Aboustit, and Soon-Jo Hong, An Evaluation of
Finte Element Models for Soil Consolidatimn Geotechnical Engineering Report No. 11,
OSURF 715107-84-2, AFOSR Grant 83-0055, April 1984.

1A. Mahantesh S. Hiremath, and Ranbir S. Sandhu, A Computer Program for
Dynamic Response of Layered Saturated Sands, Geotechnical Engineering Report No. 12,
OSURF 715107-84-3, AFOSR Grant 83-0055, June 1984.

1.5. Raubir S. Sandhu, Soon-Jo Hong, and Baher L Aboustit, Response of Satu-
rated Soils to Dynamic Loadin. Geotechnical Engineering Report No. 13, OSURF
715107-84-4, AFOSR Grant 83-0055, June 1984.

1.6. Ranbir S. Sandhu, Baher L Aboustit, Soon-Jo Hong, and Mahantesh S. Hire-
math, A Computer Program for Consolidation and Dynamic Response Analysis of Fluid-
Saturated Media Geotechnical Engineering Report No. 14, OSURF 715107-84-5, AFOSR
Grant 83-0055, June 1984.

1.7. Ranbir S. Sandhu, and Soon-Jo Hong, Variational Principles for Dynamics
of Linear Elastic Fluid-Saturated Soils, Geotechnical Engineering Report No. 16, OSURF
715729-85-3, AFOSR Grant 83-0055, April 1985.

1.8. Ranbir S. Sandhu, William E. Wolfe, and Harpal S. Chohan, An Eirenfunc-
tion Procedure for Dynamic Response Analysis of Saturated Soils, Geotechnical Engineer-
ing Report No. 18, OSURF 717885-88-1, AFOSR Grant 83-0055, February 1988.
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1.9. William E. Wolfe, Ranbir S Sandhu, and Vincent E. Amato, Preliminary
Tests on Liquefaction of Ottawa Sand, Geotechnical Engineering Report No. 19, OSURF
716894-86-2, AFOSR Grant 83-0055, January 1986.

1.10. Ranbir S. Sandhu, William E. Wolfe, and Hann-Ling Shaw, Analysis of
Dynamic Response of saturated Soils using a Three-Field Formulation, Geotechnical Engi-
neering Report No. 20, OSURF 716894-86-3, AFOSR Grant 83-0055, June 1986.

1.11. William E. Wolfe, Ranbir S Sandhu, and Vincent E. Amato, Shaking Table
Tests of Anisotropically Consolidated Ottawa Sand, Geotechnical Engineering Report No.
21, OSURF 716894-86-2, AFOSR Grant 83-0055, March 1986.

1.12. Ranbir S Sandhu, and Mahantesh & Hiremath, Finite Element Analysis of
Wave Propagation in Saturated Soils, Geotechnical Engineering Report No. 22, OSURF
717885-87-6, AFOSR Grant 83-0055, March 1987.

1.13. Ranbir & Sandhu, and Mahantesh & Hiremath, Wave Propagation in Non-
Linear Fluid-Saturated Porous Solids, Geotechnical Engineering Report No. 23, OSURF
717885-87-9, AFOSR Grant 83-0055, July 1987.

1.14. Ranbir & Sandhu, William E. Wolfe, and Soon-Jo Hong, Wave Propagation
in Fluid-Saturated Elastic Porous Solids, Geotechnical Engineering Report No. 24, OSURF
716894-86-4, AFOSR Grant 83-0055, July 1986.

1.15. Leslie W. Morland, Ranbir & Sandhu, William E. Wolfe, and Mahantesh S.
Hiremath, Wave Propagation in a Fluid-Saturated Elastic Layer, Geotechnical Engineering
Report No. 25, OSURF 717885-87-5, AFOSR Grant 83-0055, January 1987.

1.16. William E. Wolfe, Ranbir S Sandhu and Dennis L Jasinski, The Effects of _

Band-Limited White Noise Excitation on Liquefaction Potential in Large-Scale Tess Geo-
technical Engineering Report No. 26, OSURF 717885-87-8, AFOSR Grant 83-0055, Janu-
ary 1987.

1.17. Ranbir S Sandhu, William E. Wolfe, and Mahantesh & Hiremath, Com-
puter Program DALES (Dynamic Analysis of Linear Elastic Soils), Geotechnical Engi- 0
neering Report No. 27, OSURF 717885-87-7, AFOSR Grant 83-0055, March 1987.

1.18. William E. Wolfe, Ranbir & Sandhu, and Harpal S. Chohan, An Evaluation
of the Liquefaction Potential of Ottawa Sand Using a Shaking Table, Geotechnical Engi-
neering Report No. 29, OSURF 717885-88-3, AFOSR Grant 83-0055, February 1988

0
1.19. Ranbir & Sandhu, William E. Wolfe, Mahantesh & Hiremath, and Harpal S.

Chohan, Computer Program DANS (Dynamic Analysis of Nonlinear Soils), Geotechnical
Engineering Report No. 30, OSURF 717885-88-2, AFOSR Grant 83-0055, February 1988.
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B.2 CONFERENCE PROCEEDINGS

2.1. Ranbir S Sandhu, Constitutive Models for Saturated Sands, in Proceedings
Part 2, Symposium on Interaction of Non-Nuclear Munitions with Structures, Air Force
Academy, Colorado Springs, May 1983.

2.2. Ranbir S. Sandhu, Constitutive Equations for Flui2-Saturated Porous Sol-
ids, Proceedings, Engineering Foundation Conference on Compressibility Phenomena in
Subsidence, Henniker College, Henniker, New Hampshire, July 29 to August 3 1984.

2.3. Ranbir S. Sandhu, Baher L Aboustit, and S. J. Hong, Finite Element Anal-
ysis of Flow and Deformation in Saturated Sols, Proccedings, Second Symposium on
interaction of Non-Nuclear Munitions with Structures, Panama City, Florida, April 1985.

2.4. Ranbir S. Sandhu, S. . Hong, and Baher L Aboustit, Analysis of
Response of Saturated Soil Systems Subjected to Dynamic Loading, Proccedings, Sec-
ond Symposium on interaction of Non-Nuclear Munitions with Structures, Panama City,
Florida, April 1985.

2.5. Mahantesh S. Hiremath, and Ranbir S. Sandhu, Appication of Theories of
Mixtures to Behavior of Fluid-Saturated Deformable Porous Media, Proccedings, Sec-
ond Symposium on interaction of Non-Nuclear Munitions with Structures, Panama City,
Florida, April 1985.

2.6. Raymond M. Kolonay, William E. Wolfe, and Ranbir S Sandhu, Laborato-
ry Data Collection and Processing Using a Microcomputer, Proceedings, First Canadian
Conference on Computer Applications in Civil Engineering/Micro-Computers, Hamilton,
Ontario, May 1986.

2.7. Soon-Jo Hong, and Ranbir S. Sandhu, Some Analytical Solutions of Elastic
Wave Propagation in Fluid-Saturated Porous Media, Eleventh canadian Conference of
Applied Mechanics, Univeraity of Alberta, Edmonton, Alberta, May 1987.

2.8. Leslie W. Morland, Ranbir S. Sandhu, and William E. Wolfe, Uniaxial
Wave Propagation Through Fluid-Saturated Elastic Soil Layer, Sixth Int. Conf. Num.
Methods in Geomech, Innsbruck, Austria, April 1988.

B.3 REFEREED JOURNAL ARTICLES

3.1. Ranbir S. Sandhu, Shyan-Chyun Lee, and Hwie-Ing The, Special Finite
Elements for Analysis of SoU Consolidation, Int. Jour. of Num. AnaL Methods in
Geomech., VoL 9, pp. 125-147, 1985.

3.2. Ranbir S. Sandhu, and Soon-Jo Hong, Dynamics of Fluid-Saturated Soils -
Variational Formulation, mt. Jour. of Num. AnaL Methods in Geomech., Vol 11, pp.
241-255, 1987.

3.3. Mahantesh S. Hiremath, Ranbir S. Sandhu, Leslie W. Morland, and
William E. Wolfe, Analysis of One-Dimensional Wave Propagation in a Fluid-
Saturated SI Column, Int. Jour. of Num. Anal Methods in Geomech, Vol. 12, pp.
121-140, 1988.
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3.41 1L & Sandhu, H. L Shaw, and S. J. Hong, A Three Field Finite Element
Procedure for Analysis of Elastic Wave Protogation Through Fluid-Saturated Soils,
Accepted for Publication in the Int. Jour. Soil Dynzamic, and Earthquake Engg.

3.5. S. J. Hong, R. S. Sandhu, and W. E. W11fe, On Garg's Solution of Blot's
Equations of Wave Propagation In a OQw-Dimensional Fluld..SPturated Elastic Porous
soid, Accepted for Publication in Int. Jour. Num. and Anal Methods in Geomech.

BA DISSERTATIONS AND THESES

4.1. Hann-Ling Shaw, Finite Element Analysis of Dynamic Response of Saturat-
ed Soils Using a Three-Field Formulation. MS. Thesis, The Ohio State University,
Columbus, Ohio, 1986.

4.2. Harpal S Chohan, An Eigenfunction Procedure for Dynamic Response Anal-
ysis of Saturated Soils, MS. Thesis, The Ohio State University, Columbus, Ohio, 1986.

4.3. Vincent E. Amato, Shaking Table Tests to Determine Liquefaction Potential
of Anisotropical1y Consolidated Saturated Ottawa Sand MS. Thesis, The Ohio State
University, Columbus, Ohio, 1986.

4.4. Dennis L Jasinski, The effects of Band-Limited White Noise Excitation on
Liquefaction Potential in Large-Scale Test MS. Thesis, The Ohio State University,
Columbus, Ohio, 1986.

4.5. Mahantesh S. Hiremath, A Dynamical Theory of Wave Propagation in
Fluid-SatuTrated Solid. Ph.D, 1987.

B.5 OTHER PRESENTATIONS

In addition to the publications and presentations listed above, the principal investi-

gator and his co-workers presented results of the research at the following conferences:

5.1. Ranbir S. Sandhu, Application of Theories of M tures to Saturated
Soils, Engineering Foundation Conference on "Compressibility Phenomena in Subsidence",
Henniker College, Henniker, New Hampshire, July 29 to August 3 1984.

5.2. Ranbir S. Sandhu, Finite Elment Analysis of Flow Through Deformable
Porous Media, Society of Engineering Science, 21st Annual Meeting, 15-17 October
1984, Virginia Polytechnic and State University, Blacksburg, Virginia.

Alo Mr. Amato presented a paper on the experimental work at a seminar in Lexing-
ton. Kentucky on )ctober 11, 1985. Dr. RS. Sandhu was invited by the university of
Rhode Island, Dept. of Civil Engineering, to present a guest lecture in November 1985,
on Finite Element Analysis of Dynamics of Saturated Soils.
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A summary of results of the research was made available in letter form to the
National Research Council. Committee on Earthquake Engineering, Panel on Liquefaction.
This panel planned to hold a workshop at MIT during March 1985 and seminars were
conducted later in the year. Dr. Sandhu attended the National Research Council seminar
on State-of-the-Art in Soil Liquefaction. A written contribution to the seminar report
was submitted to Dr. Robert V. Whitman along with copies of the contribution to
members of the Earthquake Engineering Committe of the National Reserach Council and
the participants and observers at the workshop. Dr. Wolfe attended a symposium organ-
ized by the AFOSR at MIT on September 14 and 15, 1987.
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